Some combinatorics of binomial coefficients and the Bloch-Gieseker property for some homogeneous bundles

被引:0
|
作者
Chang, MC [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
D O I
10.1090/S0002-9947-01-02837-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vector bundle has the Bloch-Gieseker property if all its Chern classes are numerically positive. In this paper we show that the non-ample bundle Omega (p)(Pn) (p +1) has the Bloch-Gieseker property, except for two cases, in which the top Chern classes are trivial and the other Chern classes are positive. Our method is to reduce the problem to showing, e.g. the positivity of the coefficient of t(k) in the rational function (1+t)((p)(n)) (1+3t) ((n)(p-2)) ... (1+(p-1)t)((n)(2))(1+(p+1)t)/(1+2t)((n)(p-1))((1+4t))((p-) (n)(3))...((1+pt))((n)(1)) (for p even).
引用
收藏
页码:975 / 992
页数:18
相关论文
共 50 条