A Method for Calibrating Deterministic Forecasts of Rare Events

被引:13
|
作者
Marsh, Patrick T. [1 ,2 ,3 ]
Kain, John S. [1 ]
Lakshmanan, Valliappa [1 ,3 ]
Clark, Adam J. [1 ,3 ]
Hitchens, Nathan M. [1 ]
Hardy, Jill [2 ]
机构
[1] Natl Severe Storms Lab, Norman, OK 73072 USA
[2] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
[3] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA
关键词
PROBABILISTIC PRECIPITATION FORECASTS; WRF MODEL; ENSEMBLES; VERIFICATION; GENERATION; RESOLUTION; NWP;
D O I
10.1175/WAF-D-11-00074.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Convection-allowing models offer forecasters unique insight into convective hazards relative to numerical models using parameterized convection. However, methods to best characterize the uncertainty of guidance derived from convection-allowing models are still unrefined. This paper proposes a method of deriving calibrated probabilistic forecasts of rare events from deterministic forecasts by fitting a parametric kernel density function to the model's historical spatial error characteristics. This kernel density function is then applied to individual forecast fields to produce probabilistic forecasts.
引用
收藏
页码:531 / 538
页数:8
相关论文
共 50 条