Differential Absorption Radar at 170 GHz for Atmospheric Boundary Layer Water Vapor Profiling

被引:0
|
作者
Roy, Richard J. [1 ]
Cooper, Ken B. [1 ]
Lebsock, Matthew [1 ]
Millan, Luis [1 ]
Siles, Jose [1 ]
Monje, Raquel Rodriguez [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91126 USA
基金
美国国家航空航天局;
关键词
Millimeter wave radar; Meteorological radar; Radar signal processing; LIDAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are developing a frequency-modulated continuous-wave (FMCW) radar between 167 and 174.8 GHz to measure differential absorption due to water vapor within the atmospheric boundary layer. In this work, we report on single-frequency measurements performed within this band in the presence of precipitating clouds. Despite the relatively low transmit power of 6-10 dBm, the high transmit/receive isolation and low noise figure of the system enables detection of radar echos from rain or clouds with high signal-to-noise ratio (SNR) out to about one kilometer. This work builds on technology developed and measurements performed in our group in the 183.5 to 193 GHz band, which is subject to transmission restrictions due to passive remote sensing platforms that rely on those frequencies.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 50 条
  • [1] Differential Absorption Radar at 170 GHz for Atmospheric Boundary Layer Water Vapor Profiling
    Roy, Richard J.
    Cooper, Ken B.
    Lebsock, Matthew
    Millan, Luis
    Siles, Jose
    Monje, Raquel Rodriguez
    2018 48TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2018, : 1437 - 1440
  • [2] Boundary-layer water vapor profiling using differential absorption radar
    Roy, Richard J.
    Lebsock, Matthew
    Millan, Luis
    Dengler, Robert
    Monje, Raquel Rodriguez
    Siles, Jose V.
    Cooper, Ken B.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (12) : 6511 - 6523
  • [3] Evaluation of a Compact Broadband Differential Absorption Lidar for Routine Water Vapor Profiling in the Atmospheric Boundary Layer
    Newsom, R. K.
    Turner, D. D.
    Lehtinen, R.
    Muenkel, C.
    Kallio, J.
    Roininen, R.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2020, 37 (01) : 47 - 65
  • [4] The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique
    Lebsock, M. D.
    Suzuki, K.
    Millan, L. F.
    Kalmus, P. M.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (09) : 3631 - 3645
  • [5] Summarization of Differential Absorption Liadr for Profiling Atmospheric Water Vapor Overseas
    Hong Guang-lie
    Li Jia-tang
    Kong Wei
    Shu Rong
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (02) : 340 - 348
  • [6] Towards quantitative atmospheric water vapor profiling with differential absorption lidar
    Dinovitser, Alex
    Gunn, Lachlan J.
    Abbott, Derek
    OPTICS EXPRESS, 2015, 23 (17): : 22907 - 22921
  • [7] Differential Absorption Radar at 170 and 560 GHz for Humidity Remote Sensing
    Cooper, Ken B.
    Roy, Richard J.
    Siles, Jose, V
    Lebsock, Matthew
    Millan, Luis
    Pradhan, Omkar
    Monje, Raquel Rodriguez
    PASSIVE AND ACTIVE MILLIMETERWAVE IMAGING XXIII, 2020, 11411
  • [8] Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
    Roy, Richard J.
    Lebsock, Matthew
    Kurowski, Marcin J.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (10) : 6443 - 6468
  • [9] Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer
    Kong, Wei
    Li, Jiatang
    Liu, Hao
    Chen, Tao
    Hong, Guanglie
    Shu, Rong
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [10] 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar
    Spaeth, Florian
    Behrendt, Andreas
    Muppa, Shravan Kumar
    Metzendorf, Simon
    Riede, Andrea
    Wulfmeyer, Volker
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (04) : 1701 - 1720