Flexural behavior of hybrid fiber-reinforced polymer/concrete beam/slab bridge component

被引:2
|
作者
Burgueño, R [1 ]
Davol, A
Zhao, L
Seible, F
Karbhari, VM
机构
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
[2] Cal Poly San Luis Obispo, Luis Obispo, CA USA
[3] Univ Cent Florida, Orlando, FL 32816 USA
[4] Univ Calif San Diego, Jacobs Sch Engn & Eric & Johannna Reissner, La Jolla, CA 92093 USA
关键词
bridge; flexure; polymer; reinforcement; shear; stress;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents an experimental and analytical investigation on the flexural behavior of a hybrid fiber-reinforced polymer (FRP)/concrete beam/slab bridge component. The beam element consists of a carbon/epoxy cylindrical shell filled with concrete where the FRP shell serves the dual purpose of formwork and reinforcement. A conventional reinforced concrete slab connects to the FRP/concrete girder through steel dowels anchored in the girder concrete core. The composite beam/slab system was experimentally investigated through a full-scale four-point bending flexural test. Section analysis procedures and approximate formulas for the flexural response of FRP/concrete beam/slab units were developed and correlated with experimental results. The shear connection efficiency was additionally evaluated through a push-out test and correlated with codified recommendations. The importance of stress concentrations on holes drilled for connection purposes on generally anisotropic shells was assessed. The overall investigation showed that the presented hybrid FRP/concrete concept is a viable option for beam-and-slab bridges.
引用
收藏
页码:228 / 236
页数:9
相关论文
共 50 条
  • [1] Flexural behavior of concrete beams hybrid-reinforced with glass fiber-reinforced polymer, carbon fiber-reinforced polymer, and steel rebars
    Terzioglu, Hilal
    Yildirim, Meltem Eryilmaz
    Karagoz, Omer
    Unluoglu, Esref
    Dogan, Mizan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (05) : 775 - 795
  • [2] Effectiveness of Hybrid Fibers on Flexural Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Patil, Ganapati M.
    Chellapandian, M.
    Prakash, S. Suriya
    ACI STRUCTURAL JOURNAL, 2020, 117 (05) : 269 - 282
  • [3] Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars
    Attia, Karim
    Alnahhal, Wael
    Elrefai, Ahmed
    Rihan, Yousef
    COMPOSITE STRUCTURES, 2019, 211 : 1 - 12
  • [4] Flexural Performance of Carbon Fiber-Reinforced Polymer Prestressed Concrete Side-by-Side Box Beam Bridge
    Grace, Nabil F.
    Jensen, Elin A.
    Noamesi, Delali K.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2011, 15 (05) : 663 - 671
  • [5] Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Toutanji, HA
    Saafi, M
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 712 - 719
  • [6] Flexural Behavior of Steel Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Wu, Tao
    Sun, Yijia
    Liu, Xi
    Wei, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (02)
  • [7] Cyclic Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Exterior Beam-Column-Slab Connections
    Ghomi, Shervin
    El-Salakawy, Ehab F.
    ACI STRUCTURAL JOURNAL, 2020, 117 (02) : 171 - 183
  • [8] Flexural Behavior of Corroded Concrete Beams Strengthened with Carbon Fiber-Reinforced Polymer
    Wang, Yiyuan
    Wu, Jin
    MATERIALS, 2023, 16 (12)
  • [9] Flexural Behavior of concrete-filled fiber-reinforced polymer circular tubes
    Fam, AZ
    Rizkalla, SH
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2002, 6 (02) : 123 - 132
  • [10] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329