New integral estimates in substatic Riemannian manifolds and the Alexandrov Theorem

被引:7
|
作者
Fogagnolo, Mattia [1 ]
Pinamonti, Andrea [2 ]
机构
[1] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio Giorgi, Piazza Cavalieri 3, I-56126 Pisa, Italy
[2] Univ Trento, Via Sommar 14, I-38123 Povo, TN, Italy
关键词
Alexandrov Theorem; Heintze-Karcher inequality; Substatic manifolds; Boundary value problem; CONSTANT MEAN-CURVATURE; FORMULA; HYPERSURFACES; STABILITY;
D O I
10.1016/j.matpur.2022.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive new integral estimates on substatic manifolds with boundary of horizon type, naturally arising in General Relativity. In particular, we generalize to this setting an identity due to Magnanini-Poggesi [24] leading to the Alexandrov Theorem in R-n and improve on a Heintze-Karcher type inequality due to Li-Xia [22]. Our method relies on the introduction of a new vector field with nonnegative divergence, generalizing to this setting the P-function technique of Weinberger [36]. (C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:299 / 317
页数:19
相关论文
共 50 条