Formal and analytic normal forms for non-autonomous difference systems with uniform dichotomy spectrum

被引:1
|
作者
Zhihua, Ren [1 ]
Peirong, Wang [1 ]
Yanqin, Xu [1 ]
Hao, Wu [2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing, Peoples R China
关键词
Normal form; Non-autonomous difference systems; Poincare theorem; Uniform dichotomy spectrum; THEOREMS;
D O I
10.1186/s13662-020-02577-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend formal and analytic normal forms from autonomous difference systems to non-autonomous ones based on the uniform dichotomy spectrum of their linear part.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Formal and analytic normal forms for non-autonomous difference systems with uniform dichotomy spectrum
    Ren Zhihua
    Wang Peirong
    Xu Yanqin
    Wu Hao
    Advances in Difference Equations, 2020
  • [2] Non-autonomous normal forms for Hamiltonian systems
    McDonald, RJ
    Murdock, J
    Namachchivaya, NS
    DYNAMICS AND STABILITY OF SYSTEMS, 1999, 14 (04): : 357 - 384
  • [3] Normal Forms for Nonautonomous Nonlinear Difference Systems Under Nonuniform Dichotomy Spectrum
    Song, Ning
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [4] Integrability and strong normal forms for non-autonomous systems in a neighbourhood of an equilibrium
    Fortunati, Alessandro
    Wiggins, Stephen
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [5] A Note on Stronger Forms of Sensitivity for Non-Autonomous Dynamical Systems on Uniform Spaces
    Jiao, Lixin
    Wang, Heyong
    Wang, Lidong
    Wang, Nan
    Furui, Sadataka
    ENTROPY, 2024, 26 (01)
  • [6] NORMAL FORM OF NON-AUTONOMOUS SYSTEMS
    KOSTIN, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (08): : 693 - 696
  • [7] The new notion of Bohl dichotomy for non-autonomous difference equations and its relation to exponential dichotomy
    Czornik, Adam
    Kitzing, Konrad
    Siegmund, Stefan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (05) : 626 - 658
  • [8] On Stronger Forms of Sensitivity in Non-autonomous Systems
    Vasisht, Radhika
    Das, Ruchi
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (05): : 1139 - 1159
  • [9] Uniform asymptotic stability of linear non-autonomous systems
    Christensen, GS
    CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2003, 28 (3-4): : 173 - 176
  • [10] Uniform attractors for non-autonomous random dynamical systems
    Cui, Hongyong
    Langa, Jose A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1225 - 1268