Robust portfolio optimization with derivative insurance guarantees

被引:58
|
作者
Zymler, Steve [1 ]
Rustem, Berc [1 ]
Kuhn, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
关键词
Robust optimization; Portfolio optimization; Portfolio insurance; Second-order cone programming; VALUE-AT-RISK; SELECTION; STRATEGIES; MANAGEMENT; RETURNS; ERRORS;
D O I
10.1016/j.ejor.2010.09.027
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside of the uncertainty set. We propose a novel robust optimization model for designing portfolios that include European-style options. This model trades off weak and strong guarantees on the worst-case portfolio return. The weak guarantee applies as long as the asset returns are realized within the prescribed uncertainty set, while the strong guarantee applies for all possible asset returns. The resulting model constitutes a convex second-order cone program, which is amenable to efficient numerical solution procedures. We evaluate the model using simulated and empirical backtests and analyze the impact of the insurance guarantees on the portfolio performance. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:410 / 424
页数:15
相关论文
共 50 条
  • [1] PROBABILISTIC GUARANTEES IN ROBUST OPTIMIZATION
    Bertsimas, Dimitris
    den Hertog, Dick
    Pauphilet, Jean
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2893 - 2920
  • [2] THE PORTFOLIO OPTIMIZATION MODELS FOR INSURANCE
    L'udovit, Pinda
    Juraj, Pekar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE QUANTITATIVE METHODS IN ECONOMICS (MULTIPLE CRITERIA DECISION MAKING XIV), 2008, : 231 - +
  • [3] Robust Portfolio Optimization
    Qiu, Huitong
    Han, Fang
    Liu, Han
    Caffo, Brian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [4] Robust portfolio optimization
    Lauprete, GJ
    Samarov, AM
    Welsch, RE
    DEVELOPMENTS IN ROBUST STATISTICS, 2003, : 235 - 245
  • [5] Robust portfolio optimization
    G. J. Lauprete
    A. M. Samarov
    R. E. Welsch
    Metrika, 2002, 55 : 139 - 149
  • [6] Robust portfolio optimization
    Lauprete, GJ
    Samarov, AM
    Welsch, RE
    METRIKA, 2002, 55 (1-2) : 139 - 149
  • [7] Linear optimization in C(Ω) and portfolio insurance
    Polyrakis, IA
    OPTIMIZATION, 2003, 52 (02) : 221 - 239
  • [8] Robust portfolio optimization with copulas
    Kakouris, Iakovos
    Rustem, Berc
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (01) : 28 - 37
  • [9] Distributionally Robust Portfolio Optimization
    Bardakci, I. E.
    Lagoa, C. M.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1526 - 1531
  • [10] Robust ranking and portfolio optimization
    Tri-Dung Nguyen
    Lo, Andrew W.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (02) : 407 - 416