Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation

被引:8
|
作者
Mamaghani, Magnolia [1 ]
Enchery, Guillaume [1 ]
Chainais-Hillairet, Claire [2 ,3 ]
机构
[1] IFP Energies Nouvelles, Direct Ingn Reservoir, R032,1-4 Ave Bois Preau, F-92852 Rueil Malmaison, France
[2] Univ Blaise Pascal, Clermont Univ, Math Lab, F-63000 Clermont Ferrand, France
[3] CNRS, UMR 6620, Math Lab, F-63177 Aubiere, France
关键词
SAGD; Adaptive mesh refinement; A posteriori error estimator; Error bounds (65M15); Finite volume methods (76M12); Conservation laws (35L65); FINITE-VOLUME SCHEMES; NONLINEAR HYPERBOLIC EQUATION; MULTIDIMENSIONAL CONSERVATION-LAWS; ERROR ESTIMATE; ENTROPY SOLUTION; CONVERGENCE;
D O I
10.1007/s10596-010-9192-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Steam-assisted gravity drainage (SAGD) is an enhanced oil recovery process for heavy oils and bitumens. Numerical simulations of this thermal process allow us to estimate the retrievable volume of oil and to evaluate the benefits of the project. As there exists a thin flow interface (compared to the reservoir dimensions), SAGD simulations are sensitive to the grid size. Thus, to obtain precise forecasts of oil production, very small-sized cells have to be used, which leads to prohibitive CPU times. To reduce these computation times, one can use an adaptive mesh refinement technique, which will only refine the grid in the interface area and use coarser cells outside. To this end, in this work, we introduce new refinement criteria, which are based on the work achieved in Kroner and Ohlberger (Math Comput 69(229): 25-39, 2000) on a posteriori error estimators for finite volume schemes for hyperbolic equations. Through numerical experiments, we show that they enable us to decrease in a significant way the number of cells (and then CPU times) while maintaining a good accuracy in the results.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 50 条
  • [1] Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation
    Magnolia Mamaghani
    Guillaume Enchéry
    Claire Chainais-Hillairet
    Computational Geosciences, 2011, 15 : 17 - 34
  • [2] Numerical Simulation of Steam-Assisted Gravity Drainage With Vertical Slimholes
    Chang, J.
    Ivory, J.
    Tunney, C.
    SPE RESERVOIR EVALUATION & ENGINEERING, 2012, 15 (06) : 662 - 675
  • [3] Numerical simulation of the steam-assisted gravity drainage process (SAGD)
    Chow, L
    Butler, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1996, 35 (06): : 55 - 62
  • [4] STEAM-ASSISTED GRAVITY DRAINAGE - CONCEPT, DEVELOPMENT, PERFORMANCE AND FUTURE
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1994, 33 (02): : 44 - 50
  • [5] An Experimental Study of Steam-Assisted Gravity Drainage
    Sheng, Kai
    Okuno, Ryosuke
    Imran, Muhammad
    Yamada, Tomomi
    SPE JOURNAL, 2021, 26 (03): : 1515 - 1534
  • [6] Integral Model of Steam-Assisted Gravity Drainage
    Gil'manov, A. Ya.
    Fedorov, K. M.
    Shevelev, A. P.
    FLUID DYNAMICS, 2020, 55 (06) : 793 - 803
  • [7] Steam-assisted gravity drainage performance optimization
    Egermann, P.
    Renard, G.
    Delamaide, E.
    JPT, Journal of Petroleum Technology, 2002, 53 (06):
  • [8] A New Thermogeomechanical Theory for Gravity Drainage in Steam-Assisted Gravity Drainage
    Cokar, M.
    Kallos, M. S.
    Gates, I. D.
    SPE JOURNAL, 2013, 18 (04): : 736 - 742
  • [9] Integral Model of Steam-Assisted Gravity Drainage
    A. Ya. Gil’manov
    K. M. Fedorov
    A. P. Shevelev
    Fluid Dynamics, 2020, 55 : 793 - 803
  • [10] Mathematical modeling of steam-assisted gravity drainage
    Akin, S
    COMPUTERS & GEOSCIENCES, 2006, 32 (02) : 240 - 246