Maximum likelihood estimation of triangular and polygonal distributions

被引:10
|
作者
Nguyen, Hien D. [1 ]
McLachlan, Geoffrey J. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
关键词
Triangular distributions; Polygonal distributions; Minorization-maximization algorithms; Mixture models; MM ALGORITHMS; CONVERGENCE;
D O I
10.1016/j.csda.2016.04.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Triangular distributions are a well-known class of distributions that are often used as elementary example of a probability model. In the past, enumeration and order statistics-based methods have been suggested for the maximum likelihood (ML) estimation of such distributions. A novel parametrization of triangular distributions is presented. The parametrization allows for the construction of an MM (minorization-maximization) algorithm for the ML estimation of triangular distributions. The algorithm is shown to both monotonically increase the likelihood evaluations, and be globally convergent. Using the parametrization is then applied to construct an MM algorithm for the ML estimation of polygonal distributions. This algorithm is shown to have the same numerical properties as that of the triangular distribution. Numerical simulations are provided to demonstrate the performances of the new algorithms against established enumeration and order statistics-based methods. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条