CO2 activation and conversion on Cu catalysts: Revealing the role of Cu surface defect types in tuning the activity and selectivity

被引:7
|
作者
Ma, Lixuan [1 ,2 ]
Zhao, Wantong [1 ,2 ]
Wang, Baojun [1 ,2 ]
Ling, Lixia [1 ,2 ]
Zhang, Riguang [1 ,2 ]
机构
[1] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Coal Sci & Technol, Minist Educ, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu catalysts; Surface defect types; Generalized coordination number; CO2; activation; conversion; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METHANOL SYNTHESIS; HETEROGENEOUS CATALYSTS; ELECTROREDUCTION; ADSORPTION; SITES; HYDROGENATION; COORDINATION; DISSOCIATION;
D O I
10.1016/j.fuel.2021.122686
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Cu catalysts with different defect types are widely applied in CO2 activation and conversion, however, the underlying role of Cu surface defect types in tuning the activity and selectivity is still unclear due to the complexity of surface defect types. This work constructed a series of Cu catalysts including the perfect surface, as well as the point and line defect surfaces to reveal the role of Cu surface defect types on CO2 activation and conversion using theoretical calculations. The results show that Cu defect types can effectively tune the activity and selectivity of CO2 activation and conversion; the line defect Cu surfaces have higher CO2 activation activity than the point defect and perfect surfaces. Both the line defect Cu(111)(LD) and (511)(LD) surfaces are screened out to present the highest activity toward C-1 and C-2 species formation, respectively. Moreover, Cu surfaces with different defects present an inverted volcano-type curve between d-band center and CO2 activation activity, both Cu(111)(LD) and (511)(LD) with excellent activity are attributed to the moderate d-band center. Further, the generalized coordination number (GCN) of Cu surface is proposed and confirmed as an effective descriptor to predict the activity of CO2 activation on different Cu surfaces. The results can provide the valuable structural information for the design and prediction of Cu catalysts with excellent activity and selectivity in CO2 activation and conversion.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Controlling CO2 hydrogenation selectivity by tuning surface properties of Cu/ZnxAlyOz catalysts
    Song, Lixin
    Liu, Guobin
    Qu, Zhenping
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [2] Tuning activity and selectivity of Cu-based catalysts toward CO2 reduction
    Kattel, Shyam
    Chen, Jingguang
    Rodriguez, Jose
    Liu, Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Tuning CO2 hydrogenation selectivity via support interface types on Cu-based catalysts
    Han, Caiyun
    Qin, Langlang
    Wang, Peng
    Zhang, Haotian
    Gao, Yunfei
    Zhu, Minghui
    Wang, Shuang
    Li, Jinping
    FUEL, 2024, 357
  • [4] Tuning molecular electrophilicity on Cu catalysts to steer CO2 electroreduction selectivity
    Zhou, Xianlong
    Shan, Jieqiong
    Zheng, Min
    Li, Huan
    Xia, Bao Yu
    Zheng, Yao
    SCIENCE CHINA-MATERIALS, 2024, 67 (06) : 1858 - 1865
  • [5] The plasmonic effect of Cu on tuning CO2 reduction activity and selectivity
    Xue, Jing
    Chen, Zhenlin
    Dang, Kun
    Wu, Lei
    Ji, Hongwei
    Chen, Chuncheng
    Zhang, Yuchao
    Zhao, Jincai
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (04) : 2915 - 2925
  • [6] Tuning the Catalytic Activity and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides
    Varela, Ana Sofia
    Ju, Wen
    Reier, Tobias
    Strasser, Peter
    ACS CATALYSIS, 2016, 6 (04): : 2136 - 2144
  • [7] Activation and conversion of methanol on M-C59 catalysts: Revealing the role of metal types in regulating activity and selectivity
    Wang, Wannan
    Ren, Rui-Peng
    Lv, Yong-Kang
    MOLECULAR CATALYSIS, 2024, 569
  • [8] Tuning the selectivity of CO2 conversion to CO on partially reduced Cu2O/ZnO heterogeneous interface
    Xiang, Tianci
    Liu, Ting
    Ouyang, Ting
    Zhao, Shenlong
    Liu, Zhao-Qing
    INTERDISCIPLINARY MATERIALS, 2024, 3 (03): : 380 - 388
  • [9] Unveiling the role of adsorbed hydrogen in tuning the catalytic activity of CO2 conversion to methanol at Cu/TiC surfaces
    Li, Yanli
    Chen, Dengning
    Fang, Zhongpu
    Zhou, Hegen
    Zhu, Jia
    Li, Yi
    Huang, Shuping
    Lin, Wei
    Zhang, Yongfan
    JOURNAL OF CO2 UTILIZATION, 2023, 72
  • [10] Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO
    Wang, Lei
    Peng, Hongjie
    Lamaison, Sarah
    Qi, Zhifu
    Koshy, David M.
    Stevens, Michaela Burke
    Wakerley, David
    Zeledon, Jose A. Zamora
    King, Laurie A.
    Zhou, Lan
    Lai, Yungchieh
    Fontecave, Marc
    Gregoire, John
    Abild-Pedersen, Frank
    Jaramillo, Thomas F.
    Hahn, Christopher
    CHEM CATALYSIS, 2021, 1 (03): : 663 - 680