A deformation quantization theory for noncommutative quantum mechanics

被引:19
|
作者
Dias, Nuno Costa [3 ,4 ]
de Gosson, Maurice [1 ]
Luef, Franz [1 ,2 ]
Prata, Joao Nuno [3 ,4 ]
机构
[1] Univ Vienna, NuHAG Fak Math, A-1090 Vienna, Austria
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[4] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
关键词
EQUATION; PLANE;
D O I
10.1063/1.3436581
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ["Weyl-Wigner formulation of noncommutative quantum mechanics," J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ["Wigner measures in non-commutative quantum mechanics," e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ["A new approach to the star-genvalue equation," Lett. Math. Phys. 85, 173-183 (2008)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3436581]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deformation quantization of noncommutative quantum mechanics
    Jing, SC
    Zuo, F
    Heng, TH
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [2] Deformation quantization of noncommutative quantum mechanics and dissipation
    Bastos, C.
    Bertolami, O.
    Dias, N. C.
    Prata, J. N.
    THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY - CONTRIBUTED PAPERS, 2007, 67
  • [3] Supersymmetric Quantum Mechanics on a noncommutative plane through the lens of deformation quantization
    Jim, Md. Rafsanjany
    Chowdhury, S. Hasibul Hassan
    ANNALS OF PHYSICS, 2024, 467
  • [4] Deformation of noncommutative quantum mechanics
    Jiang, Jian-Jian
    Chowdhury, S. Hasibul Hassan
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (09)
  • [5] Noncommutative quantum mechanics from noncommutative quantum field theory
    Ho, PM
    Kao, HC
    PHYSICAL REVIEW LETTERS, 2002, 88 (15) : 4 - 151602
  • [6] Deformation quantization of geometric quantum mechanics
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (19): : 4301 - 4319
  • [7] Deformation quantization in the teaching of quantum mechanics
    Hirshfeld, AC
    Henselder, P
    AMERICAN JOURNAL OF PHYSICS, 2002, 70 (05) : 537 - 547
  • [8] Polymer quantum mechanics as a deformation quantization
    Berra-Montie, Jasel
    Molgadol, Alberto
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (02)
  • [9] Noncommutative quantum mechanics as a gauge theory
    Bemfica, F. S.
    Girotti, H. O.
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [10] The symmetry groups of noncommutative quantum mechanics and coherent state quantization
    Chowdhury, S. Hasibul Hassan
    Ali, S. Twareque
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)