Pervasive algebras and maximal subalgebras

被引:0
|
作者
Gorkin, Pamela [1 ]
O'Farrell, Anthony G. [2 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
关键词
uniform algebra; logmodular algebra; pervasive algebra; maximal subalgebra; INTERPOLATING BLASCHKE PRODUCTS; ANALYTIC-FUNCTIONS; INFINITY;
D O I
10.4064/sm206-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A uniform algebra A on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X). It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain of pervasive subalgebras on X. (2) It is possible to find a compact Hausdorff space X such that there is an isomorphic copy of the lattice of all subsets of N in the family of pervasive subalgebras of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive, then it is maximal. (4) This fails if the word "strongly" is removed. We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras, and subalgebras of H-infinity(D), and develop new results that relate pervasiveness, maximality, and relative maximality to support sets of representing measures.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] MAXIMAL SUBALGEBRAS OF HEYTING ALGEBRAS
    ADAMS, ME
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1986, 29 : 359 - 365
  • [2] MAXIMAL SUBALGEBRAS OF BANACH (])-ALGEBRAS
    BONSALL, FF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (159P): : 540 - &
  • [3] Maximal subalgebras of Lie algebras containing Engel subalgebras
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (03) : 688 - 693
  • [4] On Leibniz algebras with maximal cyclic subalgebras
    Chupordia, Vasiliy A.
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2022, 63 (03): : 277 - 294
  • [5] Maximal commutative subalgebras of matrix algebras
    Song, YK
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) : 1649 - 1663
  • [6] MAXIMAL SUBALGEBRAS OF EXCEPTIONAL JORDAN ALGEBRAS
    RACINE, ML
    JOURNAL OF ALGEBRA, 1977, 46 (01) : 12 - 21
  • [7] Maximal abelian subalgebras of Banach algebras
    Dales, H. G.
    Pham, H. L.
    Zelazko, W.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1879 - 1897
  • [8] SUPPLEMENTS TO MAXIMAL SUBALGEBRAS OF LIE ALGEBRAS
    Towers, David A.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3848 - 3857
  • [10] THIN SUBALGEBRAS OF LIE ALGEBRAS OF MAXIMAL CLASS
    Avitabile, M.
    Caranti, A.
    Gavioli, N.
    Monti, V
    Newman, M. F.
    O'Brien, E. A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 101 - 112