The CMO-Dirichlet Problem for the Schrodinger Equation in the Upper Half-Space and Characterizations of CMO

被引:6
|
作者
Song, Liang [1 ]
Wu, Liangchuan [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
关键词
CMO; Schrodinger operators; Dirichlet problem; BMO; Tent spaces; HARDY-SPACES; HARMONIC-FUNCTIONS; POISSON INTEGRALS; OPERATORS; BMO; CONVERGENCE; VMO;
D O I
10.1007/s12220-022-00875-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a Schrodinger operator of the form L = -Delta + V acting on L-2 (R-n) where the non-negative potential V belongs to the reverse Holder class RHq for some q >= (n + 1)/2. Let CMOL(R-n) denote the function space of vanishing mean oscillation associated to L. In this article, we will show that a function f of CMOL(R-n) is the trace of the solution to Lu = -u(tt) + Lu = 0, u(x, 0) = f (x), if and only if, u satisfies a Carleson condition sup(B:balls) C-u,C-B := sup(B(xB, rB): balls) r(B)(-n) integral(rb)(0) integral(B(xB, rB)) vertical bar t del u(x, t)vertical bar(2)dx dt/t < infinity, and lim(a -> 0) sup(B:rb <= a) C-u,C-B = lim(a ->infinity) sup(B:rb >= a) C-u,C-B = lim(a ->infinity) sup(B:B subset of(B(0,a))c) C-u,C-B=0. This continues the lines of the previous characterizations by Duong et al. (J Funct Anal 266(4):2053-2085, 2014) and Jiang and Li (ArXiv:2006.05248v1) for the BMOL spaces, which were founded by Fabes et al. (Indiana Univ Math J 25:159-170, 1976) for the classical BMO space. For this purpose, we will prove two new characterizations of the CMOL(R-n) space, in terms of mean oscillation and the theory of tent spaces, respectively.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] The CMO-Dirichlet Problem for the Schrödinger Equation in the Upper Half-Space and Characterizations of CMO
    Liang Song
    Liangchuan Wu
    The Journal of Geometric Analysis, 2022, 32
  • [2] The CMO-Dirichlet Problem for Elliptic Systems in the Upper Half-Space
    Cao, Mingming
    POTENTIAL ANALYSIS, 2024, 60 (02) : 895 - 915
  • [3] On the Dirichlet problem for the Schrödinger equation in the upper half-space
    Bo Li
    Tianjun Shen
    Jian Tan
    Aiting Wang
    Analysis and Mathematical Physics, 2023, 13
  • [4] On the Dirichlet problem for the Schrödinger equation in the upper half-space
    Li, Bo
    Shen, Tianjun
    Tan, Jian
    Wang, Aiting
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [5] The Dirichlet Problem on the Upper Half-Space
    Huang, Jinjin
    Qiao, Lei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] THE BMO-DIRICHLET PROBLEM FOR ELLIPTIC SYSTEMS IN THE UPPER HALF-SPACE AND QUANTITATIVE CHARACTERIZATIONS OF VMO
    Maria Martell, Jose
    Mitrea, Dorina
    Mitrea, Irina
    Mitrea, Marius
    ANALYSIS & PDE, 2019, 12 (03): : 605 - 720
  • [7] Asymptotics of Solutions of the Dirichlet Problem for the Laplace Equation in the Half-Space
    P. V. Denisov
    Journal of Mathematical Sciences, 2025, 287 (5) : 729 - 734
  • [8] The nonlinear Schrodinger equation in the half-space
    Fernandez, Antonio J.
    Weth, Tobias
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 361 - 397
  • [9] SOLUTION TO DIRICHLET PROBLEM FOR A HALF-SPACE
    TOPURIYA, SB
    DOKLADY AKADEMII NAUK SSSR, 1970, 195 (03): : 567 - &
  • [10] Dirichlet Problem for the Schrodinger Operator in a Half Space
    Su, Baiyun
    ABSTRACT AND APPLIED ANALYSIS, 2012,