Atomic force bio-analytics

被引:45
|
作者
Frederix, PLTM
Akiyama, T
Staufer, U
Gerber, C
Fotiadis, D
Müller, DJ
Engel, A
机构
[1] Univ Basel, Bioctr, ME Muller Inst Microscopy, CH-4056 Basel, Switzerland
[2] Univ Neuchatel, Inst Microtechnol, CH-2007 Neuchatel, Switzerland
[3] Univ Basel, Inst Phys, Natl Competence Ctr Res Nanoscale Sci, CH-4056 Basel, Switzerland
[4] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[5] Tech Univ Dresden, BIOTEC, D-01062 Dresden, Germany
关键词
D O I
10.1016/j.cbpa.2003.08.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The atomic force microscope (AFM) allows biomolecules to be observed and manipulated under native conditions. It operates in buffer solution, produces molecular images with outstanding signal-to-noise ratio, and addresses single molecules. Progress in sample preparation and instrumentation has led to topographs that reveal sub-nanometer details and surface dynamics of biomolecules. Antibodies or oligonuclectides immobilized on cantilevers induce bending upon binding of the cognate biomolecule, allowing sub-picomolar concentrations to be measured. Biomolecules tethered between support and retracting AFM-tip produce force extension curves that reflect the mechanical stability of secondary structure elements. Furthermore, multifunctional tips may activate single molecules to observe them at work. In all cases, the cantilever is critical: its mechanical properties dictate the force-sensitivity and the scanning speed.
引用
收藏
页码:641 / 647
页数:7
相关论文
共 50 条
  • [1] Atomic force bio-analytics of polymerization and aggregation of phycoerythrin-conjugated immunoglobulin G molecules
    Chen, Yong
    Cai, Jiye
    Xu, Qingcai
    Chen, Zheng W.
    MOLECULAR IMMUNOLOGY, 2004, 41 (12) : 1247 - 1252
  • [2] PROCESS-CONTROL COMPUTERS IN BIO-ANALYTICS
    FAHR, E
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1977, 287 (2-3): : 97 - 103
  • [3] Bio-electrosprays: from bio-analytics to a generic tool for the health sciences
    Jayasinghe, Suwan N.
    ANALYST, 2011, 136 (05) : 878 - 890
  • [4] Nanostructured Si-nanowire microarrays for enhanced-performance bio-analytics
    Dawood, M. K.
    Zhou, L.
    Zheng, H.
    Cheng, H.
    Wan, G.
    Rajagopalan, R.
    Too, H. P.
    Choi, W. K.
    LAB ON A CHIP, 2012, 12 (23) : 5016 - 5024
  • [5] 1120 nm highly brilliant laser sources for SHG-modules in bio-analytics and spectroscopy
    Paschke, K.
    Fiebig, C.
    Blume, G.
    Bugge, F.
    Fricke, J.
    Erbert, G.
    NOVEL IN-PLANE SEMICONDUCTOR LASERS XII, 2013, 8640
  • [6] Deep Learning for Fast Atomic Force Microscopy Data Analytics
    Sarkar, Anwesha
    Waite, Joshua
    Sarkar, Soumik
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 283A - 283A
  • [7] Nanocharacterization of bio-silica using atomic force and ultrasonic force microscopy
    Gill, VS
    Hallinan, KP
    Brar, NS
    THIRD INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS AND THIRD CONFERENCE OF THE ASIAN-COMMITTEE-ON-EXPERIMENTAL-MECHANICS, PTS 1AND 2, 2005, 5852 : 751 - 757
  • [8] Application of atomic force microscope to the study of bio-cells
    Tittmann, B
    Du, JK
    Ebert, A
    Piccione, B
    Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems IV, 2005, 5768 : 11 - 18
  • [9] Machine learning approaches for improving atomic force microscopy instrumentation and data analytics
    Masud, Nabila
    Rade, Jaydeep
    Hasib, Md. Hasibul Hasan
    Krishnamurthy, Adarsh
    Sarkar, Anwesha
    FRONTIERS IN PHYSICS, 2024, 12
  • [10] Atomic force microscopy as an imaging tool to study the bio/nonbio complexes
    Bednarikova, Z.
    Gazova, Z.
    Valle, F.
    Bystrenova, E.
    JOURNAL OF MICROSCOPY, 2020, 280 (03) : 241 - 251