Rings whose CS modules are countably Σ-CS

被引:2
|
作者
Er, N [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
CS module; quasi-injective; continuous;
D O I
10.1081/AGB-120023971
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is called a CS module if every submodule of M is essential in a direct summand of M. In this paper, among other results, we prove that for a ring R with finitely generated right socle the following are equivalent: i) For every CS right R-module M, M-(N) is CS; ii) R is a right artinian ring with all uniforms Sigma-quasi-injective.
引用
收藏
页码:5513 / 5523
页数:11
相关论文
共 50 条
  • [1] On countably Σ-CS modules
    Alahmadi, Adel N.
    Al-Hazmi, Husain S.
    Guil Asensio, Pedro A.
    Algebra and its Applications, 2006, 419 : 1 - 6
  • [2] Rings whose CS-modules have injective singular submodules
    Kamal, MA
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1995, 20 (4A): : 729 - 733
  • [3] On the Endomorphism Rings of Max CS and Min CS Modules
    Do Van Thuat
    Hoang Dinh Hai
    Nghiem, Nguyen D. Hoa
    Chairat, Sarapee
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [4] RINGS FOR WHICH CERTAIN MODULES ARE CS
    DUNG, NV
    SMITH, PF
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 102 (03) : 273 - 287
  • [5] Rings characterized by direct sums of CS modules
    Van Huynh, D
    Jain, SK
    López-Permouth, SR
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (09) : 4219 - 4222
  • [6] Some remarks on CS modules and SI rings
    Van Huynh, D
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (03) : 461 - 466
  • [7] Indecomposable decompositions of modules whose direct sums are CS
    Pardo, JLG
    Asensio, PAG
    JOURNAL OF ALGEBRA, 2003, 262 (01) : 194 - 200
  • [8] Endomorphism Rings of Nonsingular Semiperfect Uniform CS Modules
    Al-Hazmi, Husain S.
    Alahmadi, Adel N.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (01) : 1 - 6
  • [9] Artinian rings characterized by direct sums of CS modules
    Er, N
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) : 4821 - 4833
  • [10] CS-MODULES AND WEAK CS-MODULES
    SMITH, PF
    LECTURE NOTES IN MATHEMATICS, 1990, 1448 : 99 - 115