MAXIMIZABLE INFORMATIONAL ENTROPY AS A MEASURE OF PROBABILISTIC UNCERTAINTY

被引:7
|
作者
Ou, Congjie [1 ,2 ]
El Kaabouchi, Aziz [1 ]
Nivanen, Laurent [1 ]
Chen, Jincan [1 ,3 ,4 ]
Tsobnang, Franois [1 ]
Le Mehaute, Alain [1 ]
Wang, Qiuping A. [1 ]
机构
[1] Inst Super Mat & Mecan, F-72000 Le Mans, France
[2] Huaqiao Univ, Coll Informat & Engn, Quanzhou 362021, Peoples R China
[3] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China
来源
关键词
Uncertainty; varentropy; virtual work principle; probability distribution; RELAXATION; GIBBS;
D O I
10.1142/S0217979210054713
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we consider a recently proposed entropy S defined by a variational relationship dI = d (x) over bar - (dx) over bar as a measure of uncertainty of random variable x. The entropy defined in this way underlies an extension of virtual work principle (dx) over bar = 0 leading to the maximum entropy d(I - (x) over bar) = 0. This paper presents an analytical investigation of this maximizable entropy for several distributions such as the stretched exponential distribution, kappa-exponential distribution, and Cauchy distribution.
引用
收藏
页码:3461 / 3468
页数:8
相关论文
共 50 条
  • [1] GENERALIZED MEASURE OF UNCERTAINTY AND THE MAXIMIZABLE ENTROPY
    Ou, Congjie
    El Kaabouchi, Aziz
    Chen, Jincan
    Le Mehaute, Alain
    Wang, Alexandre Qiuping
    MODERN PHYSICS LETTERS B, 2010, 24 (09): : 825 - 831
  • [2] Generalized entropy as a measure of quantum uncertainty
    Departamento de Física, Universidad Nacional de la Plata, Casilla de Correo 67, La Plata, Argentina
    Physica A: Statistical Mechanics and its Applications, 1996, 225 (3-4) : 412 - 430
  • [3] Generalized entropy as a measure of quantum uncertainty
    Portesi, M
    Plastino, A
    PHYSICA A, 1996, 225 (3-4): : 412 - 430
  • [4] An entropy measure of uncertainty in vote choice
    Gill, J
    ELECTORAL STUDIES, 2005, 24 (03) : 371 - 392
  • [5] Generalized entropy as a measure of quantum uncertainty
    Portesi, M.
    Plastino, A.
    Physica A: Statistical and Theoretical Physics, 1996, 225 (3-4):
  • [6] Probability distribution and entropy as a measure of uncertainty
    Wang, Qiuping A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (06)
  • [7] UNCERTAINTY PRINCIPLE AND INFORMATIONAL ENTROPY FOR PARTIALLY COHERENT-LIGHT
    BASTIAANS, MJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (08): : 1243 - 1246
  • [8] Uncertainty measure in rough logic: A probabilistic approach
    Liu, Zhouzhou
    She, Yanhong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (01) : 945 - 953
  • [9] Welcoming uncertainty: A probabilistic approach to measure sustainability
    Landerretche, Oscar
    Leiva, Benjamin
    Vivanco, Diego
    Lopez, Ivan
    ECOLOGICAL INDICATORS, 2017, 72 : 586 - 596
  • [10] SHANNON ENTROPY AS A MEASURE OF UNCERTAINTY IN POSITIONS AND MOMENTA
    Rudnicki, Lukasz
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (04) : 393 - 399