Elucidation of complexity and prediction of interactions in microbial communities

被引:100
|
作者
Zuniga, Cristal [1 ]
Zaramela, Livia [1 ]
Zengler, Karsten [1 ]
机构
[1] Univ Calif San Diego, Dept Pediat, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
MICROBIAL BIOTECHNOLOGY | 2017年 / 10卷 / 06期
基金
美国国家卫生研究院;
关键词
CONSTRAINT-BASED MODELS; HUMAN GUT MICROBIOME; ESCHERICHIA-COLI; METAPROTEOMICS REVEALS; RHIZOSPHERE MICROBIOME; METABOLIC INTERACTIONS; SYSTEMS BIOLOGY; AMINO-ACID; GENOME; GROWTH;
D O I
10.1111/1751-7915.12855
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microorganisms engage in complex interactions with other members of the microbial community, higher organisms as well as their environment. However, determining the exact nature of these interactions can be challenging due to the large number of members in these communities and the manifold of interactions they can engage in. Various omic data, such as 16S rRNA gene sequencing, shotgun metagenomics, metatranscriptomics, metaproteomics and metabolomics, have been deployed to unravel the community structure, interactions and resulting community dynamics insitu. Interpretation of these multi-omic data often requires advanced computational methods. Modelling approaches are powerful tools to integrate, contextualize and interpret experimental data, thus shedding light on the underlying processes shaping the microbiome. Here, we reviewcurrent methods and approaches, both experimental and computational, to elucidate interactions in microbial communities and to predict their responses to perturbations.
引用
收藏
页码:1500 / 1522
页数:23
相关论文
共 50 条
  • [1] A gap-filling algorithm for prediction of metabolic interactions in microbial communities
    Giannari, Dafni
    Ho, Cleo Hanchen
    Mahadevan, Radhakrishnan
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [2] Microbial interactions in building of communities
    Wright, C. J.
    Burns, L. H.
    Jack, A. A.
    Back, C. R.
    Dutton, L. C.
    Nobbs, A. H.
    Lamont, R. J.
    Jenkinson, H. F.
    MOLECULAR ORAL MICROBIOLOGY, 2013, 28 (02) : 83 - 101
  • [3] MICROBIAL INTERACTIONS IN SEDIMENT COMMUNITIES
    LAANBROEK, HJ
    VELDKAMP, H
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1982, 297 (1088) : 533 - 550
  • [4] Metabolic complexity drives divergence in microbial communities
    Silverstein, Michael R.
    Bhatnagar, Jennifer M.
    Segre, Daniel
    NATURE ECOLOGY & EVOLUTION, 2024, 8 (08): : 1493 - 1504
  • [5] Review on computer-assisted biosynthetic capacities elucidation to assess metabolic interactions and communication within microbial communities
    Zulfiqar, Mahnoor
    Singh, Vinay
    Steinbeck, Christoph
    Sorokina, Maria
    CRITICAL REVIEWS IN MICROBIOLOGY, 2024, 50 (06) : 1053 - 1092
  • [6] SIP goes Proteomics - Elucidation of structure and function of microbial communities
    Jehmlich, N.
    Schmidt, F.
    Taubert, M.
    von Bergen, M.
    Richnow, H. -H.
    Vogt, C.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A589 - A589
  • [7] Engineering chemical interactions in microbial communities
    Kenny, Douglas J.
    Balskus, Emily P.
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (05) : 1705 - 1729
  • [8] Decoding molecular interactions in microbial communities
    Abreu, Nicole A.
    Taga, Michiko E.
    FEMS MICROBIOLOGY REVIEWS, 2016, 40 (05) : 648 - 663
  • [9] Higher-order interactions shape microbial interactions as microbial community complexity increases
    Morin, Manon A.
    Morrison, Anneliese J.
    Harms, Michael J.
    Dutton, Rachel J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Higher-order interactions shape microbial interactions as microbial community complexity increases
    Manon A. Morin
    Anneliese J. Morrison
    Michael J. Harms
    Rachel J. Dutton
    Scientific Reports, 12