Riparian reforestation: are there changes in soil carbon and soil microbial communities?

被引:26
|
作者
Mackay, J. E. [1 ,2 ,3 ]
Cunningham, S. C. [4 ,5 ]
Cavagnaro, T. R. [1 ,2 ]
机构
[1] Univ Adelaide, Waite Res Inst, Waite Campus,PMB1, Glen Osmond, SA 5064, Australia
[2] Univ Adelaide, Sch Agr Food & Wine, Waite Campus,PMB1, Glen Osmond, SA 5064, Australia
[3] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia
[4] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Burwood, Vic 3125, Australia
[5] Univ Canberra, Inst Appl Ecol, Bruce, ACT 2617, Australia
基金
澳大利亚研究理事会;
关键词
C sequestration; Soil ecology; Phospholipid fatty acids (PLFA); Fungi to bacteria ratio; LAND-USE CHANGE; AFFORESTATION; NITROGEN; FOREST; PASTURES; SEQUESTRATION; ACCUMULATION; METAANALYSIS; MANAGEMENT; FRACTIONS;
D O I
10.1016/j.scitotenv.2016.05.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23 years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (beta-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon: nitrogen (C:N) and fungal: bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:960 / 967
页数:8
相关论文
共 50 条
  • [2] Pastures to woodlands: changes in soil microbial communities and carbon following reforestation
    Cavagnaro, T. R.
    Cunningham, S. C.
    Fitzpatrick, S.
    APPLIED SOIL ECOLOGY, 2016, 107 : 24 - 32
  • [3] Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation
    Fu, Xiaoli
    Yang, Fengting
    Wang, Jianlei
    Di, Yuebao
    Dai, Xiaoqin
    Zhang, Xinyu
    Wang, Huimin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 502 : 280 - 286
  • [4] Differentiation of soil metabolic function and microbial communities between plantations and natural reforestation
    Zhang, Nannan
    Chen, Xiaoxia
    Ren, Tingju
    Luo, Jiangcheng
    Liang, Jin
    Wang, En Tao
    Shi, Fusun
    FRONTIERS IN MICROBIOLOGY, 2025, 16
  • [5] Seasonal changes in soil biofilm microbial communities
    Stepka, Jan
    Nemcova, Lenka
    Bystriansky, Lukas
    Branny, Pavel
    Malinska, Hana Auer
    Gryndler, Milan
    SOIL BIOLOGY & BIOCHEMISTRY, 2024, 197
  • [6] Impacts of reforestation on soil and soil organic carbon losses
    Expedito Lense, Guilherme Henrique
    Parreiras, Taya Cristo
    Servidoni, Lucas Emanuel
    Mincato, Ronaldo Luiz
    CIENCIA E AGROTECNOLOGIA, 2022, 46
  • [7] Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems
    Feng, Jiguang
    He, Keyi
    Zhang, Qiufang
    Han, Mengguang
    Zhu, Biao
    GLOBAL CHANGE BIOLOGY, 2022, 28 (10) : 3426 - 3440
  • [8] Grazing Regulates Changes in Soil Microbial Communities in Plant-Soil Systems
    Zhang, Yu
    Wang, Miao
    Wang, Xu
    Li, Ruiqiang
    Zhang, Ruifu
    Xun, Weibing
    Li, Hui
    Xin, Xiaoping
    Yan, Ruirui
    AGRONOMY-BASEL, 2023, 13 (03):
  • [9] Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers
    Shao, Pengshuai
    Liang, Chao
    Lynch, Laurel
    Xie, Hongtu
    Bao, Xuelian
    SOIL BIOLOGY & BIOCHEMISTRY, 2019, 131 : 182 - 190
  • [10] Changes in microbial communities associated with anaerobic soil disinfestation
    Hong, J. C.
    Martin, K.
    Kokalis-Burelle, N.
    Butler, D.
    Serrano-Perez, P.
    Rosskopf, E.
    PHYTOPATHOLOGY, 2015, 105 (11) : 60 - 61