Equilibration and Aging of Liquids of Non-Spherically Interacting Particles

被引:10
|
作者
Cortes-Morales, Ernesto C. [1 ]
Elizondo-Aguilera, L. F. [2 ,3 ]
Medina-Noyola, M. [1 ,2 ]
机构
[1] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, Alvaro Obregon 64, San Luis Potosi 78000, Slp, Mexico
[2] Univ Guanajuato, Div Ciencias & Ingn, Dept Ingn Fis, Loma Bosque 103, Leon 37150, Mexico
[3] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Weltraum, D-51170 Cologne, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2016年 / 120卷 / 32期
关键词
FLUCTUATION-DISSIPATION THEOREM; MODE-COUPLING THEORY; IRREVERSIBLE-PROCESSES; SUPERCOOLED LIQUIDS; GLASS-TRANSITION; SPINODAL DECOMPOSITION; RECIPROCAL RELATIONS; LANGEVIN EQUATION; TRACER DIFFUSION; BROWNIAN-MOTION;
D O I
10.1021/acs.jpcb.6b04635
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nonequilibrium self-consistent generalized Langevin equation theory of irreversible processes in liquids is extended to describe the positional :and orientational thermal fluctuations of the instantaneous local concentration profile n(r,Omega,t) of a suddenly quenched colloidal liquid of particles interacting through nonspherically symmetric pairwise interactions, whose mean value <(n(r,Omega,t))over bar> is constrained to remain uniform and isotropic, (n) over bar (r,Omega,t) = (n) over bar. Such self-consistent theory is cast in terms of the time-evolution equation of the covariance sigma(t) = <(delta n(lm)(k; t)delta n(lm)dagger(k; t))over bar> of the fluctuations delta n(lm)(k; t) = n(lm)(k; t) - (n(lm)) over bar (k; t) of the spherical harmonics projections n(lm)(k; t) of the Fourier transform of n(r,Omega,t). The resulting theory describes the nonequilibrium evolution after a sudden temperature quench of both, the static structure factor projections S-lm(k,t) and the two-time correlation function F-lm(k, tau; t) equivalent to <(delta n(lm)(k; t)delta n(lm)(k, t + tau))over bar>, where tau is the correlation delay time and t is the "evolution or waiting time after the quench. As a concrete and illustrative application we use the resulting self-consistent equations to describe the irreversible processes of equilibration or aging of the orientational degrees of freedom of a system of strongly interacting classical dipoles with quenched positional disorder.
引用
收藏
页码:7975 / 7987
页数:13
相关论文
共 50 条
  • [1] RADAR STUDIES OF THE NON-SPHERICALLY SYMMETRIC SOLAR CORONA
    OWOCKI, SP
    NEWKIRK, GA
    SIME, DG
    SOLAR PHYSICS, 1982, 78 (02) : 317 - 331
  • [2] Collapse of non-spherically symmetric scalar field distributions
    Ganguly, Koyel
    Banerjee, Narayan
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (08) : 2141 - 2155
  • [3] NUMERICAL INVESTIGATIONS ON STABILITY OF BUBBLES OSCILLATING NON-SPHERICALLY
    STRUBE, HW
    ACUSTICA, 1971, 25 (05): : 289 - &
  • [4] Collapse of non-spherically symmetric scalar field distributions
    Koyel Ganguly
    Narayan Banerjee
    General Relativity and Gravitation, 2011, 43 : 2141 - 2155
  • [5] Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles
    Cleve, S.
    Guedra, M.
    Mauger, C.
    Inserra, C.
    Blanc-Benon, P.
    JOURNAL OF FLUID MECHANICS, 2019, 875 : 597 - 621
  • [6] A NON-SPHERICALLY SYMMETRIC MODEL FOR ABSORPTION REGIONS NEAR QUASARS
    JUNKKARINEN, VT
    ASTROPHYSICAL JOURNAL, 1983, 265 (01): : 73 - 84
  • [7] Signatures of microstreaming patterns induced by non-spherically oscillating bubblesa)
    Regnault, Gabriel
    Mauger, Cyril
    Blanc-Benon, Philippe
    Doinikov, Alexander A.
    Inserra, Claude
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (02): : 1188 - 1197
  • [8] Perturbative Approach to the Gravitational Lensing by a Non-Spherically Distorted Compact Object
    Saijo, Amano
    Kasai, Masumi
    PROGRESS OF THEORETICAL PHYSICS, 2011, 126 (01): : 157 - 166
  • [10] Non-spherically symmetric transparent potentials for the three-dimensional Schrodinger equation
    Kerimov, G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (38) : 11607 - 11615