Existence of triangular Lie bialgebra structures II

被引:3
|
作者
Feldvoss, J [1 ]
机构
[1] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
关键词
D O I
10.1016/j.jpaa.2004.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize finite-dimensional Lie algebras over an arbitrary field of characteristic zero which admit a non-trivial (quasi-) triangular Lie bialgebra structure. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 50 条
  • [1] Existence of triangular Lie bialgebra structures
    Feldvoss, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 134 (01) : 1 - 14
  • [2] EXISTENCE OF A LIE BIALGEBRA STRUCTURE ON EVERY LIE-ALGEBRA
    DESMEDT, V
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) : 225 - 231
  • [3] Lie Bialgebra Structures on Lie Algebras of Block Type
    Cheng, Yongsheng
    Song, Guang'ai
    Xin, Bin
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 677 - 690
  • [4] Lie Bialgebra Structures on the Lie Algebra £ Related to the Virasoro Algebra
    Chen, Xue
    Su, Yihong
    Zheng, Jia
    SYMMETRY-BASEL, 2023, 15 (01):
  • [5] Lie bialgebra structures on Lie algebras of generalized Weyl type
    Yue, Xiaoqing
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1537 - 1549
  • [6] Dual Lie bialgebra structures of Poisson types
    SONG Guang'Ai
    SU YuCai
    Science China(Mathematics), 2015, 58 (06) : 1151 - 1162
  • [7] Lie bialgebra structures on the Schrodinger-Virasoro Lie algebra
    Han, Jianzhi
    Li, Junbo
    Su, Yucai
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [8] Dual Lie bialgebra structures of Poisson types
    Song Guang'Ai
    Su YuCai
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1151 - 1162
  • [9] Dual Lie bialgebra structures of Poisson types
    Guang’Ai Song
    YuCai Su
    Science China Mathematics, 2015, 58 : 1151 - 1162
  • [10] Lie bialgebra structures on derivation Lie algebra over quantum tori
    Tang, Xiaomin
    Liu, Lijuan
    Xu, Jinli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 949 - 965