Selecting and ranking time series models using the NOEMON approach

被引:0
|
作者
Prudêncio, RBC [1 ]
Ludermir, TB [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50732970 Recife, PE, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we proposed to use the NOEMON approach to rank and select time series models. Given a time series, the NOEMON approach provides a ranking of the candidate models to forecast that series, by combining the outputs of different learners. The best ranked models are then returned as the selected ones. In order to evaluate the proposed solution, we implemented a prototype that used MLP neural networks as the learners. Our experiments using this prototype revealed encouraging results.
引用
收藏
页码:654 / 661
页数:8
相关论文
共 50 条
  • [1] Selecting nonlinear time series models using information criteria
    Psaradakis, Zacharias
    Sola, Martin
    Spagnolo, Fabio
    Spagnolo, Nicola
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (04) : 369 - 394
  • [2] ON SELECTING MODELS FOR NONLINEAR TIME-SERIES
    JUDD, K
    MEES, A
    PHYSICA D, 1995, 82 (04): : 426 - 444
  • [3] A modal symbolic classifier for selecting time series models
    Prudêncio, RBC
    Ludermir, TB
    de Carvalho, FDT
    PATTERN RECOGNITION LETTERS, 2004, 25 (08) : 911 - 921
  • [4] TIME SERIES FORECASTING WITH MULTIPLE CANDIDATE MODELS:SELECTING OR COMBINING?
    K.K.Lai
    Y.Nakamori
    Journal of Systems Science & Complexity, 2005, (01) : 1 - 18
  • [5] TIME SERIES FORECASTING WITH MULTIPLE CANDIDATE MODELS:SELECTING OR COMBINING?
    K.K.Lai
    Y.Nakamori
    Journal of Systems Science and Complexity, 2005, (01) : 1 - 18
  • [6] Meta-leaming approaches to selecting time series models
    Prudênico, RBC
    Ludermir, TB
    NEUROCOMPUTING, 2004, 61 : 121 - 137
  • [7] DIAGNOSTIC CHECKING FOR TIME SERIES MODELS USING NONPARAMETRIC APPROACH
    钟登华
    尼伯伦丁
    Transactions of Tianjin University, 1997, (01) : 45 - 49
  • [8] Ranking and Selecting Clustering Algorithms Using a Meta-Learning Approach
    de Souto, Marcilio C. P.
    Prudencio, Ricardo B. C.
    Soares, Rodrigo G. F.
    de Araujo, Daniel S. A.
    Costa, Ivan G.
    Ludermir, Teresa B.
    Schliep, Alexander
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3729 - +
  • [9] Selecting Variables in Regression Models. A New Approach to the Prediction of Time Series of SO2
    Sestelo, Marta
    Villanueva, Nora M.
    Roca-Pardinas, Javier
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [10] A new approach for time series prediction using ensembles of ANFIS models
    Melin, Patricia
    Soto, Jesus
    Castillo, Oscar
    Soria, Jose
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3494 - 3506