Lp-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on Double-struck capital Rn

被引:0
|
作者
Tao, Wenyu [1 ]
Chen, Yanping [1 ]
Xiao, Yayuan [2 ]
Wang, Liwei [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[3] Anhui Polytech Univ, Sch Math & Phys, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; Kato square root; elliptic operators; Sobolev space; WEIGHTED NORM INEQUALITIES; INTEGRAL-OPERATORS; BMO FUNCTIONS; SPACES;
D O I
10.1007/s11425-017-9310-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -div(A backward difference ) be a second-order divergent-form elliptic operator, where A is an accretive n x n matrix with bounded and measurable complex coefficients on Double-struck capital R-n: Herein, we prove that the commutator [b; L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document}] of the Kato square root L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt L $$\end{document} and b with backward difference b is an element of L-n(Double-struck capital R-n)(n > 2), is bounded from the homogenous Sobolev space L & x2d9;1p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot L_1<^>p(\mathbb{R}<^>n)$$\end{document} to L-p(Double-struck capital Rn) (p-(L) < p < p+(L)).
引用
收藏
页码:575 / 594
页数:20
相关论文
共 20 条
  • [1] Lp-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on ℝn
    Wenyu Tao
    Yanping Chen
    Yayuan Xiao
    Liwei Wang
    Science China Mathematics, 2020, 63 : 575 - 594
  • [2] L~p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R~n
    Wenyu Tao
    Yanping Chen
    Yayuan Xiao
    Liwei Wang
    ScienceChina(Mathematics), 2020, 63 (03) : 575 - 594
  • [3] On LP estimates for square roots of second order elliptic operators on Rn
    Auscher, P
    PUBLICACIONS MATEMATIQUES, 2004, 48 (01) : 159 - 186
  • [4] WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF THE KATO SQUARE ROOT OF SECOND ORDER ELLIPTIC OPERATORS ON Rn*
    Chen, Yanping
    Ding, Yong
    Zhu, Kai
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1310 - 1332
  • [5] The Commutator of the Kato Square Root for Second Order Elliptic Operators on Rn
    Yan Ping CHEN
    Yong DING
    Steve HOFMANN
    Acta Mathematica Sinica,English Series, 2016, 32 (10) : 1121 - 1144
  • [6] Commutators with fractional differentiation for second-order elliptic operators on Rn
    Chen, Yanping
    Deng, Qingquan
    Ding, Yong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (02)
  • [7] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [8] Gradient Estimates for Commutators of Square Roots of Elliptic Operators with Complex Bounded Measurable Coefficients
    Chen, Yanping
    Ding, Yong
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 466 - 491
  • [9] Gradient Estimates for Commutators of Square Roots of Elliptic Operators with Complex Bounded Measurable Coefficients
    Yanping Chen
    Yong Ding
    The Journal of Geometric Analysis, 2017, 27 : 466 - 491
  • [10] Weighted Norm Inequalities for Commutators of the Kato Square Root of Second Order Elliptic Operators on ℝn
    Yanping Chen
    Yong Ding
    Kai Zhu
    Acta Mathematica Scientia, 2022, 42 : 1310 - 1332