Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform

被引:81
|
作者
Li, Huiying [1 ,2 ]
Jia, Mingming [1 ,3 ,4 ]
Zhang, Rong [1 ]
Ren, Yongxing [1 ,5 ]
Wen, Xin [1 ,5 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Jilin, Peoples R China
[2] Qingdao Univ Technol, Sch Management Engn, Qingdao 266520, Shandong, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[4] Natl Earth Syst Sci Data Ctr, Beijing 100101, Peoples R China
[5] Jilin Univ, Coll Earth Sci, Changchun 130061, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
phenology; species mapping; coastal wetlands; Zhangjiang estuary; Spartina alterniflora; RANDOM FOREST CLASSIFIER; L;
D O I
10.3390/rs11212479
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. This is the first study to use phonological signatures in discriminating mangrove species. The methodology presented can be used as a practical guideline for the mapping of mangrove or other vegetation species in other regions. However, future work should pay attention to various phenological trajectories of mangrove species in different locations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Combination of Google Earth imagery and Sentinel-2 data for mangrove species mapping
    Li, Hongzhong
    Han, Yu
    Chen, Jinsong
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01):
  • [2] Combination of Google Earth imagery and Sentinel-2 data for mangrove species mapping
    Li, Hongzhong
    Han, Yu
    Chen, Jinsong
    Journal of Applied Remote Sensing, 2020, 14 (01):
  • [3] Mapping National Mangrove Cover for Belize Using Google Earth Engine and Sentinel-2 Imagery
    Cissell, Jordan R.
    Canty, Steven W. J.
    Steinberg, Michael K.
    Simpson, Lorae T.
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [4] A Broadscale Assessment of Sentinel-2 Imagery and the Google Earth Engine for the Nationwide Mapping of Chlorophyll a
    Johansen, Richard A.
    Reif, Molly K.
    Saltus, Christina L.
    Pokrzywinski, Kaytee L.
    SUSTAINABILITY, 2024, 16 (05)
  • [5] An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine
    Ni, Rongguang
    Tian, Jinyan
    Li, Xiaojuan
    Yin, Dameng
    Li, Jiwei
    Gong, Huili
    Zhang, Jie
    Zhu, Lin
    Wu, Dongli
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 282 - 296
  • [6] SHORELINE EXTRACTION USING TIME SERIES OF SENTINEL-2 SATELLITE IMAGES BY GOOGLE EARTH ENGINE PLATFORM
    Rostami, E.
    Sharifi, M. A.
    Hasanlou, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 653 - 659
  • [7] Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine
    Yang, Kaixiang
    Luo, Youming
    Li, Mengyao
    Zhong, Shouyi
    Liu, Qiang
    Li, Xiuhong
    REMOTE SENSING, 2022, 14 (17)
  • [8] Building a mangrove ecosystem monitoring tool for managers using Sentinel-2 imagery in Google Earth Engine
    Kotikot, Susan M.
    Spencer, Olivia
    Cissell, Jordan R.
    Connette, Grant
    Smithwick, Erica A. H.
    Durdall, Allie
    Grimes, Kristin W.
    Stewart, Heather A.
    Tzadik, Orian
    Canty, Steven W. J.
    OCEAN & COASTAL MANAGEMENT, 2024, 256
  • [9] Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine
    Liu, Luo
    Xiao, Xiangming
    Qin, Yuanwei
    Wang, Jie
    Xu, Xinliang
    Hu, Yueming
    Qiao, Zhi
    REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [10] Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine
    Kislik, Chippie
    Dronova, Iryna
    Grantham, Theodore E.
    Kelly, Maggi
    ECOLOGICAL INDICATORS, 2022, 140