NONLINEAR DIFFUSION IN CUBIC CRYSTALS

被引:0
|
作者
Janavicius, A. J. [1 ]
Turskiene, S. [2 ]
机构
[1] Siauliai Univ, Proc Modeling Ctr, P Visinskio St 19, LT-77156 Shiauliai, Lithuania
[2] Siauliai Univ, Inst Informat Math & E Studies, P Visinskio St 19, LT-77156 Shiauliai, Lithuania
来源
ROMANIAN JOURNAL OF PHYSICS | 2016年 / 61卷 / 7-8期
关键词
three dimensional nonlinear diffusion equation; approximate analytical solution; similarity variables;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have made a mathematical consideration of an important case of nonlinear diffusion of impurities for a three-dimensional cubic crystals case through a square window or point sources in the x y plane for more exact evaluation of technological parameters for the production of electronic devices or crystals properties modification. The well known nonlinear diffusion model with diffusion coefficients proportional to the concentration of impurities defining spreading of impurities with finite velocity was used. The solutions of the presented nonlinear diffusion equation determine profiles of impurities more exactly. The directions of diffusion can be included taking in the care crystals symmetry. For approximate analytical solving of the three-dimensional nonlinear diffusion equation we introduced similarity variables. The approximate analytical solution of the transformed equation was expressed by Taylor series using the expansion about the maximum penetration depths of the impurities in x y z axes including the square terms.
引用
收藏
页码:1245 / 1254
页数:10
相关论文
共 50 条
  • [1] LATTICE INTERPOINT DIFFUSION IN CUBIC-CRYSTALS
    VARAKSIN, AN
    VOLOBUEV, PV
    SUETIN, PE
    FIZIKA TVERDOGO TELA, 1973, 15 (09): : 2678 - 2684
  • [2] NEEDLE CRYSTALS WITH NONLINEAR DIFFUSION
    KURTZE, DA
    PHYSICAL REVIEW A, 1987, 36 (01): : 232 - 237
  • [3] Nonlinear polarization spectroscopy of impure cubic crystals
    Lisitsa, M.P.
    Valakh, M.Ya.
    Tarasov, G.G.
    Boiko, S.A.
    Brodin, A.M.
    Shpak, A.M.
    Voska, R.
    Feldvari, I.
    Physica Status Solidi (B) Basic Research, 1988, 150 (02): : 907 - 911
  • [4] Nonlinear photonic crystals: III. Cubic nonlinearity
    Babin, A
    Figotin, A
    WAVES IN RANDOM MEDIA, 2003, 13 (04): : R41 - R69
  • [5] Nonlinear elastic response of cubic crystals to biaxial strain
    Wang, Xueqiang
    Gu, Yousong
    Sun, Xu
    Zhang, Yue
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 284 - 288
  • [6] Nonlinear diffusion in excited Si crystals
    Janavicius, AJ
    Norgela, Z
    Purlys, R
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2005, 29 (02): : 127 - 131
  • [7] NONLINEAR POLARIZATION SPECTROSCOPY OF IMPURE CUBIC-CRYSTALS
    LISITSA, MP
    VALAKH, MY
    TARASOV, GG
    BOIKO, SA
    BRODIN, AM
    SHPAK, AM
    VOSKA, R
    FELDVARI, I
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1988, 150 (02): : 907 - 911
  • [8] NONLINEAR ROTATION OF POLARIZATION ELLIPSE IN CUBIC-CRYSTALS
    OVANDER, LN
    PETRENKO, AD
    OPTIKA I SPEKTROSKOPIYA, 1975, 39 (06): : 1164 - 1169
  • [9] Nonlinear coupling of surface and quasitransverse bulk modes in cubic crystals
    Kumon, RE
    Hamilton, MF
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 113 (06): : 3060 - 3064
  • [10] Nonlinear diffusion in excited HgCdTe and Si crystals
    Janavicius, AJ
    Norgela, Z
    Purlys, R
    ACTA PHYSICA POLONICA A, 2003, 104 (05) : 459 - 467