Tensile deformation of low density duplex Fe-Mn-Al-C steel

被引:83
|
作者
Yang, Fuqiang [1 ]
Song, Renbo [1 ]
Li, Yaping [1 ]
Sun, Ting [1 ]
Wang, Kaikun [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
Duplex Fe-Mn-Al-C steel; In situ SEM; Slip band; Dislocation glide; Continuous strain hardening; INDUCED PLASTICITY STEEL; STRAIN-HARDENING BEHAVIOR; MECHANICAL-PROPERTIES; HIGH-STRENGTH; MICROSTRUCTURAL EVOLUTION; AUSTENITIC STEELS; MULTIPHASE STEEL; TEMPERATURE; WEIGHT;
D O I
10.1016/j.matdes.2015.03.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis were performed on the duplex Fe-27Mn-11.5Al-0.95C steel at room temperature to examine the tensile deformation behavior. The steel consisting of stable austenite matrix and a small amount of ferrite exhibited excellent combination of high strength and ductility (46.5 GPa%) in solid solution state due to the continuous strain hardening behavior. In situ SEM revealed that slip bands appeared in the austenite grain at the early deformation stage, and different slip systems intersected with higher density as the displacement increased. The deformation strains of austenite were obviously larger than that of ferrite, which resulted into the ferrite crack propagation at the later stage. With the stack fault energy (SFE) of similar to 80 mJ/m(2), the evolution of dislocation substructure with increasing strain shows typical planar glide characteristics, namely, dislocation pile-ups, Taylor lattice, high density dislocation walls, domain boundary and intersected microbands. Grain subdivision by microband intersection at high strains results in stable work hardening rate and continuous strain hardening behavior. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 50 条
  • [1] Tensile Deformation Behavior of Fe-Mn-Al-C Low Density Steels
    Zhang, Xiao-feng
    Yang, Hao
    Leng, De-ping
    Zhang, Long
    Huang, Zhen-yi
    Chen, Guang
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2016, 23 (09) : 963 - 972
  • [2] Tensile Deformation Behavior of Fe-Mn-Al-C Low Density Steels
    Xiao-feng Zhang
    Hao Yang
    De-ping Leng
    Long Zhang
    Zhen-yi Huang
    Guang Chen
    Journal of Iron and Steel Research International, 2016, 23 : 963 - 972
  • [3] Tensile Deformation Behavior of Fe-Mn-Al-C Low Density Steels
    Xiao-feng ZHANG
    Hao YANG
    De-ping LENG
    Long ZHANG
    Zhen-yi HUANG
    Guang CHEN
    JournalofIronandSteelResearch(International), 2016, 23 (09) : 963 - 972
  • [4] Tensile deformation behavior related with strain-induced martensitic transformation in a duplex Fe-Mn-Al-C low-density steel
    Chen, Peng
    Chen, Rong
    Li, Xiao-Wu
    MATERIALS CHARACTERIZATION, 2022, 189
  • [5] Tensile Behavior and Deformation Mechanism of Fe-Mn-Al-C Low Density Steel with High Strength and High Plasticity
    Pang, Jingyu
    Zhou, Zhanming
    Zhao, Zhengzhi
    Tang, Di
    Liang, Juhua
    He, Qing
    METALS, 2019, 9 (08)
  • [6] Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature
    Park, Kyung-Tae
    SCRIPTA MATERIALIA, 2013, 68 (06) : 375 - 379
  • [7] Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel
    Seo, Chang-Hyo
    Kwon, Ki Hyuk
    Choi, Kayoung
    Kim, Kyung-Hun
    Kwak, J. H.
    Lee, S.
    Kim, Nack J.
    SCRIPTA MATERIALIA, 2012, 66 (08) : 519 - 522
  • [8] The hot deformation behavior in austenite-ferrite heterostructured low density Fe-Mn-Al-C steel
    Wu, Zhiqiang
    Liu, Shuai
    Hasan, Md Nazmul
    Li, Eric
    An, Xianghai
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [9] Effect of Al Content and Solution Treatment on Tensile and Corrosion Resistance of Fe-Mn-Al-C Low-Density Steel
    Ma, Tao
    Li, Huirong
    Gao, Jianxin
    Li, Yungang
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 537 - 548
  • [10] Dislocation substructures in tensile deformed Fe-Mn-Al-C steel
    Riaz, T.
    Das, S. R.
    Sahu, T.
    Chakraborti, P. C.
    Sahu, P.
    MATERIALS LETTERS, 2021, 282 (282)