A global random walk on grid algorithm for second order elliptic equations

被引:1
|
作者
Sabelfeld, Karl K. [1 ]
Smirnov, Dmitry [1 ]
Dimov, Ivan [2 ]
Todorov, Venelin [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Novosibirsk, Russia
[2] Bulgarian Acad Sci, Inst Informat & Commun Technol, Dept Parallel Algorithms, Acad G Bonchev Str,Block 25 A, Sofia 1113, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Dept Informat Modeling, Acad Georgi Bonchev Str,Block 8, Sofia 1113, Bulgaria
来源
MONTE CARLO METHODS AND APPLICATIONS | 2021年 / 27卷 / 04期
基金
俄罗斯科学基金会;
关键词
Stochastic algorithms; large linear systems; global random walk on grid; balanced sampling; Monte Carlo methods; FLOATING RANDOM-WALK; MONTE-CARLO METHODS; SPHERES ALGORITHM;
D O I
10.1515/mcma-2021-2097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman-Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 50 条