Predicting the oxidation of carbon monoxide on nanoporous gold by a deep-learning method

被引:6
|
作者
Zhou, Yuheng [1 ]
Deng, Hui [1 ]
Huang, Xubo [2 ]
Hu, Yuntao [3 ]
Ye, Bin [2 ]
Lu, Linfang [4 ]
机构
[1] Sci & Technol Res & Dev Ctr Sinopec, Sinopec Res Inst Petr Engn, Beijing 100000, Peoples R China
[2] Zhejiang Univ, Key Lab Appl Chem Zhejiang Prov, Dept Chem, Hangzhou 310027, Peoples R China
[3] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol, Berkeley, CA 94720 USA
[4] Hangzhou Normal Univ, Coll Mat Chem & Chem Engn, Hangzhou 311121, Peoples R China
基金
奥地利科学基金会;
关键词
Nanoporous gold; CO oxidation; Deep learning; Catalytic science; Neural network; TEMPERATURE CO OXIDATION; CATALYTIC-ACTIVITY;
D O I
10.1016/j.cej.2021.131747
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nanoporous golds (NPG) exhibit excellent performance on CO oxidation due to unique pore structures with huge surface areas. However, it is a challenge for the prediction-assessing of catalytic performance without any experimental data. Herein, deep-learning methods are used to establish the structure-property relationship on NPGs. By comparing different learning algorithms, the deep recursive neural network (DRNN) can be assessed as the best network up to more than 98% accuracy. With several structural parameters, our trained model can be employed as an accurate descriptor to predict the transformation capability of CO molecules on gold catalysts and further to estimate the optimal zone in this system combined with nonlinear programming map. These meaningful findings greatly expand a way to optimize catalysts combining interdisciplinary research means, exhibiting a great application potential in the design of future catalysts.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Thermal Activation of Nanoporous Gold for Carbon Monoxide Oxidation
    Wild, Stefan
    Baeumer, Marcus
    Risse, Thomas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (04): : 1770 - 1777
  • [2] Assessing the Applicability of Deep-Learning Method for Predicting Cyanobacteria in a Regulated River
    Kim, Jungwook
    Kim, Hongtae
    Kim, Kyunghyun
    Ahn, Jung Min
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2024, 150 (05)
  • [3] A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins
    Li, Bian
    Mendenhall, Jeffrey
    Capra, John A.
    Meiler, Jens
    JOURNAL OF PROTEOME RESEARCH, 2021, 20 (08) : 4089 - 4100
  • [4] Gold-catalysed oxidation of carbon monoxide
    Geoffrey C Bond
    David T Thompson
    Gold Bulletin, 2000, 33 : 41 - 50
  • [5] Gold-catalysed oxidation of carbon monoxide
    Bond, GC
    Thompson, DT
    GOLD BULLETIN, 2000, 33 (02) : 41 - 51
  • [6] Predicting progression to AD using a deep-learning model
    Kelsey R.
    Nature Reviews Neurology, 2019, 15 (9) : 492 - 492
  • [7] Gold supported on mixed oxides for the oxidation of carbon monoxide
    Moreau, Francois
    Bond, Geoffrey C.
    van der Linden, Bart
    Silberova, Bozena A. A.
    Makkee, Michiel
    APPLIED CATALYSIS A-GENERAL, 2008, 347 (02) : 208 - 215
  • [8] Gold/titania interfaces and their role in carbon monoxide oxidation
    Grunwaldt, JD
    Baiker, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (06): : 1002 - 1012
  • [9] Gold nanoparticles on ceria supports for the oxidation of carbon monoxide
    Carabineiro, S. A. C.
    Silva, A. M. T.
    Drazic, G.
    Tavares, P. B.
    Figueiredo, J. L.
    CATALYSIS TODAY, 2010, 154 (1-2) : 21 - 30
  • [10] Preferential oxidation of carbon monoxide on supported gold catalysts
    M. A. Kipnis
    E. A. Volnina
    A. A. Ezhov
    V. K. Ivanov
    Kinetics and Catalysis, 2013, 54 : 358 - 368