Microlocal partition of energy for linear wave or Schrodinger equations

被引:2
|
作者
Delort, Jean -Marc [1 ]
机构
[1] Univ Paris XIII Sorbonne Paris Nord, Dept Math, Villetaneuse, France
基金
美国国家科学基金会;
关键词
wave equation; Schr?dinger equation; channels of energy; microlocal analysis;
D O I
10.2140/tunis.2022.4.329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a microlocal partition of energy for solutions to linear half-wave or Schrodinger equations in any space dimension. This extends well-known (local) results valid for the wave equation outside the wave cone, and allows us in particular, in the case of even dimension, to generalize the radial estimates due to Cote, Kenig and Schlag to nonradial initial data.
引用
收藏
页码:329 / 385
页数:58
相关论文
共 50 条
  • [1] MICROLOCAL SINGULARITIES AND SCATTERING THEORY FOR SCHRODINGER EQUATIONS ON MANIFOLDS
    Nakamura, S.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 99 - 112
  • [2] Microlocal smoothing effect for Schrodinger equations in Gevrey spaces
    Kajitani, K
    Taglialatela, G
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) : 855 - 896
  • [3] Microlocal smoothing effect for Schrodinger equations in Gevrey spaces
    Kajitani, K
    Taglialatela, G
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 977 - 985
  • [4] Microlocal analysis of fractional wave equations
    Hoermann, Guenther
    Oparnica, Ljubica
    Zorica, Dusan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (02): : 217 - 225
  • [5] A microlocal study of a transparent condition for the linear Schrodinger equation
    Antoine, X
    Besse, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (05): : 359 - 364
  • [6] Multicomplex Wave Functions for Linear And Nonlinear Schrodinger Equations
    Theaker, Kyle A.
    Van Gorder, Robert A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1857 - 1879
  • [7] Energy partition for the linear radial wave equation
    Cote, Raphael
    Kenig, Carlos E.
    Schlag, Wilhelm
    MATHEMATISCHE ANNALEN, 2014, 358 (3-4) : 573 - 607
  • [8] Energy partition for the linear radial wave equation
    Raphaël Côte
    Carlos E. Kenig
    Wilhelm Schlag
    Mathematische Annalen, 2014, 358 : 573 - 607
  • [9] MICROLOCAL PROPERTIES OF SCATTERING MATRICES FOR SCHRODINGER EQUATIONS ON SCATTERING MANIFOLDS
    Ito, Kenichi
    Nakamura, Shu
    ANALYSIS & PDE, 2013, 6 (02): : 257 - 286
  • [10] ENERGY DECAY AND PARTITION FOR DISSIPATIVE WAVE-EQUATIONS
    GOLDSTEIN, JA
    ROSENCRANS, SI
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 36 (01) : 66 - 73