Compatibility and Schur complements of operators on Hilbert C*-module

被引:2
|
作者
Fang, Xiaochun [1 ]
Yu, Jing [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Qingdao Univ, Dept Math, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilbert C*-module; Compatibility; Complementability; Schur complement; Quotient property; OBLIQUE PROJECTIONS; SPACE; THEOREM; MATRIX;
D O I
10.1007/s11401-010-0623-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a Hilbert C*-module, and S be an orthogonally complemented closed submodule of E. The authors generalize the definitions of S-complementability and S-compatibility for general (adjointable) operators from Hilbert space to Hilbert C*-module, and discuss the relationship between each other. Several equivalent statements about S-complementability and S-compatibility, and several representations of Schur complements of S-complementable operators (especially, of S-compatible operators and of positive S-compatible operators) on a Hilbert C*-module are obtained. In addition, the quotient property for Schur complements of matrices is generalized to the quotient property for Schur complements of S-complementable operators and S*-complementable operators on a Hilbert C*-module.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 50 条
  • [1] Compatibility and Schur Complements of Operators on Hilbert C~*-Module
    Xiaochun FANG1 Jing YU2 1Department of Mathematics
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (01) : 69 - 88
  • [2] Compatibility and Schur complements of operators on Hilbert C*-module
    Xiaochun Fang
    Jing Yu
    Chinese Annals of Mathematics, Series B, 2011, 32 : 69 - 88
  • [3] Idempotent operator and its applications in Schur complements on Hilbert C*-module
    Karizaki, Mehdi Mohammadzadeh
    Moghani, Zahra Niazi
    SPECIAL MATRICES, 2023, 11 (01):
  • [4] RADIUS FOR HILBERT C*-MODULE OPERATORS
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (02): : 87 - 96
  • [5] Note on compact operators on a Hilbert C*-module
    Wei, Changguo
    Liu, Chenchen
    Liu, Shudong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [6] On the ideal of compact operators on a Hilbert C*-module
    Wang, Ruofei
    Wei, Changguo
    Liu, Shudong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 441 - 451
  • [7] Schur complements of selfadjoint Krein space operators
    Contino, Maximiliano
    Maestripieri, Alejandra
    Marcantognini, Stefania
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 214 - 246
  • [8] MODULE WEAK BANACH-SAKS AND MODULE SCHUR PROPERTIES OF HILBERT C*-MODULES
    Frank, Michael
    Pavlov, Alexander A.
    JOURNAL OF OPERATOR THEORY, 2013, 70 (01) : 53 - 73
  • [9] Schur complements on Hilbert spaces and saddle point systems
    Bacuta, Constantin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (02) : 581 - 593
  • [10] Schur complements in C*-algebras
    Cvetkovic-Ilic, DS
    Djordjevic, DS
    Rakocevic, V
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (7-8) : 808 - 814