CALABI-YAU PROPERTY UNDER MONOIDAL MORITA-TAKEUCHI EQUIVALENCE

被引:7
|
作者
Wang, Xingting [1 ]
Yu, Xiaolan [2 ]
Zhang, Yinhuo [3 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[3] Univ Hasselt, Dept Math & Stat, Univ Campus, B-3590 Diepenbeek, Belgium
关键词
Morita-Takeuchi equivalence; Calabi-Yau algebra; cogroupoid; QUANTUM GROUPS; HOPF-ALGEBRAS; DUALIZING COMPLEXES; RINGS;
D O I
10.2140/pjm.2017.290.481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H and L be two Hopf algebras such that their comodule categories are monoidally equivalent. We prove that if H is a twisted Calabi-Yau (CY) Hopf algebra, then L is a twisted CY algebra when it is homologically smooth. In particular, if H is a Noetherian twisted CY Hopf algebra and L has finite global dimension, then L is a twisted CY algebra.
引用
收藏
页码:481 / 510
页数:30
相关论文
共 19 条