K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 1: Carbonation Behaviors of K2CO3/Al2O3

被引:60
|
作者
Zhao, Chuanwen [1 ]
Chen, Xiaoping [1 ]
Zhao, Changsui [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
SOLID SORBENT; REACTION TEMPERATURE; ACTIVE-COMPONENT; DRY SORBENTS; SEPARATION; DIOXIDE; PRETREATMENT; RECOVERY; K2CO3;
D O I
10.1021/ef200725z
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present paper is the first part of a series of papers about a systematical investigation on the application of the K2CO3/Al2O3 sorbent for capturing CO2 in flue gas. It was focused on the carbonation behaviors of K2CO3/Al2O3 in a thermogravimetric analyzer. The effects of the temperature, gas composition, and pressure on the reactions were studied by analyzing the experimental breakthrough data. It was found that K2CO3/Al2O3 shows a high CO2 capture capacity, and its carbonation conversion reaches 68.3-91.8% in 20 min, when the reaction temperature is in the range of 55-75 degrees C, the CO2 concentration is in the range of 5-20%, the H2O concentration is in the range of 12-21%, and the pressure is 0.1 MPa. The total carbonation conversion mainly depends upon the reaction in the first 5 min, and the reaction rate, reaches the maximum in about 2 min. The total carbonation conversion increases with the increase of CO2 and H2O concentrations but decreases with the increase of the temperature and pressure. Among the factors studied, the H2O concentration and pressure were found to have a significant impact on the carbonation. Moreover, water pretreatment of the sorbent plays an important role in the carbonation reaction.
引用
收藏
页码:1401 / 1405
页数:5
相关论文
共 50 条
  • [1] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 2: Regeneration Behaviors of K2CO3/Al2O3
    Zhao, Chuanwen
    Chen, Xiaoping
    Zhao, Changsui
    ENERGY & FUELS, 2012, 26 (02) : 1406 - 1411
  • [2] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 4: Abrasion Characteristics of the K2CO3/Al2O3 Sorbent
    Zhao, Chuanwen
    Chen, Xiaoping
    Zhao, Changsui
    ENERGY & FUELS, 2012, 26 (02) : 1395 - 1400
  • [3] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 3: CO2 Capture Behaviors of K2CO3/Al2O3 in a Bubbling Fluidized-Bed Reactor
    Zhao, Chuanwen
    Chen, Xiaoping
    Zhao, Changsui
    Wu, Ye
    Dong, Wei
    ENERGY & FUELS, 2012, 26 (05) : 3062 - 3068
  • [4] K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 5: Carbonation and Failure Behavior of K2CO3/Al2O3 in the Continuous CO2 Sorption-Desorption System
    Wu, Ye
    Chen, Xiaoping
    Dong, Wei
    Zhao, Chuanwen
    Zhang, Zhonglin
    Liu, Daoyin
    Liang, Cai
    ENERGY & FUELS, 2013, 27 (08) : 4804 - 4809
  • [5] Reaction mechanism of K2CO3/Al2O3 sorbents for CO2 absorption
    Zhang, Zhonglin
    Liu, Daoyin
    Dong, Wei
    Wu, Ye
    Meng, Qingmin
    Chen, Xiaoping
    Huagong Xuebao/CIESC Journal, 2014, 65 (10): : 4101 - 4109
  • [6] K2CO3/MgO/Al2O3 sorbent for CO2 capture in a fluidized bed
    Li, Lei
    Li, Yong
    Wang, Feng
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Sun, Yuhan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [7] The negative effects of SO2 on CO2 capture with K2CO3/Al2O3
    Wu, Ye
    Chen, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (02) : 1041 - 1049
  • [8] The negative effects of SO2 on CO2 capture with K2CO3/Al2O3
    Ye Wu
    Xiaoping Chen
    Journal of Thermal Analysis and Calorimetry, 2015, 122 : 1041 - 1049
  • [9] Effects of the Adsorbent Preparation Method for CO2 Capture from Flue Gas Using K2CO3/Al2O3 Adsorbents
    Sengupta, Surajit
    Amte, Vinay
    Dongara, Rajeshwer
    Das, Asit Kumar
    Bhunia, Haripada
    Bajpai, Pramod Kumar
    ENERGY & FUELS, 2015, 29 (01) : 287 - 297
  • [10] TiO2-Doped K2CO3/Al2O3 Sorbents for CO2 Capture
    Dong, Wei
    Chen, Xiaoping
    Wu, Ye
    ENERGY & FUELS, 2014, 28 (05) : 3310 - 3316