Evolving problems to learn about particle swarm and other optimisers

被引:0
|
作者
Langdon, WB [1 ]
Poli, R [1 ]
机构
[1] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use evolutionary computation (EC) to automatically find problems which demonstrate the strength and weaknesses of modern search heuristics. In particular we analyse Particle Swarm Optimization (PSO) and Differential Evolution (DE). Both evolutionary algorithms are contrasted with a robust deterministic gradient based searcher (based on Newton-Raphson). The fitness landscapes made by genetic programming (GP) are used to illustrate difficulties in GAs and PSOs thereby explaining how they work and allowing us to devise better extended particle swarm systems (XPS).
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Evolving problems to learn about particle swarm optimizers and other search algorithms
    Langdon, W. B.
    Poli, Riccardo
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (05) : 561 - 578
  • [2] Diversity Rate of Change Measurement for Particle Swarm Optimisers
    Bosman, Phlippie
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, ANTS 2014, 2014, 8667 : 86 - 97
  • [3] Critical considerations on angle modulated particle swarm optimisers
    Leonard, Barend J.
    Engelbrecht, Andries P.
    Cleghorn, Christopher W.
    SWARM INTELLIGENCE, 2015, 9 (04) : 291 - 314
  • [4] The influence of fitness landscape characteristics on particle swarm optimisers
    A P Engelbrecht
    P Bosman
    K M Malan
    Natural Computing, 2022, 21 : 335 - 345
  • [6] Critical considerations on angle modulated particle swarm optimisers
    Barend J. Leonard
    Andries P. Engelbrecht
    Christopher W. Cleghorn
    Swarm Intelligence, 2015, 9 : 291 - 314
  • [7] The influence of fitness landscape characteristics on particle swarm optimisers
    Engelbrecht, A. P.
    Bosman, P.
    Malan, K. M.
    NATURAL COMPUTING, 2022, 21 (02) : 335 - 345
  • [8] Particle Swarm Optimisers for cluster formation in wireless sensor networks
    Guru, SM
    Halgamuge, SK
    Fernando, S
    PROCEEDINGS OF THE 2005 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2005, : 319 - 324
  • [9] Extending Particle Swarm Optimisers with Self-Organized Criticality
    Lovbjerg, M
    Krink, T
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1588 - 1593
  • [10] Training product unit networks using Cooperative Particle Swarm Optimisers
    van den Bergh, F
    Engelbrecht, AP
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 126 - 131