Adaptive Thresholding for Sparse Covariance Matrix Estimation

被引:382
|
作者
Cai, Tony [1 ]
Liu, Weidong [1 ,2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Dept Math, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Frobenius norm; Optimal rate of convergence; Spectral norm; Support recovery; Universal thresholding; WAVELET SHRINKAGE; REGULARIZATION;
D O I
10.1198/jasa.2011.tm10560
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covariance matrices under the spectral norm. In contrast, the commonly used universal thresholding estimators are shown to be suboptimal over the same parameter spaces. Support recovery is discussed as well. The adaptive thresholding estimators are easy to implement. The numerical performance of the estimators is studied using both simulated and real data. Simulation results demonstrate that the adaptive thresholding estimators uniformly outperform the universal thresholding estimators. The method is also illustrated in an analysis on a dataset from a small round blue-cell tumor microarray experiment. A supplement to this article presenting additional technical proofs is available online.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 50 条
  • [1] ADAPTIVE COVARIANCE MATRIX ESTIMATION THROUGH BLOCK THRESHOLDING
    Cai, Tony
    Yuan, Ming
    ANNALS OF STATISTICS, 2012, 40 (04): : 2014 - 2042
  • [2] Adaptive Functional Thresholding for Sparse Covariance Function Estimation in High Dimensions
    Fang, Qin
    Guo, Shaojun
    Qiao, Xinghao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1473 - 1485
  • [3] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [4] Sparse basis covariance matrix estimation for high dimensional compositional data via hard thresholding
    Li, Huimin
    Wang, Jinru
    STATISTICS & PROBABILITY LETTERS, 2024, 209
  • [5] C-ISTA: Iterative Shrinkage-Thresholding Algorithm for Sparse Covariance Matrix Estimation
    Xia, Wenfu
    Zhao, Ziping
    Sun, Ying
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 215 - 219
  • [6] Estimation of a sparse and spiked covariance matrix
    Lian, Heng
    Fan, Zengyan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (02) : 241 - 252
  • [7] Distributed Sparse Covariance Matrix Estimation
    Xia, Wenfu
    Zhao, Ziping
    Sun, Ying
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [8] Robust Adaptive Beamforming via Sparse Covariance Matrix Estimation and Subspace Projection
    Sun, Lei
    Wang, Huali
    Wu, Yanjun
    Xu, Guangjie
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 1437 - 1441
  • [9] Estimating Sparse Covariance Matrix Under Differential Privacy via Thresholding
    Wang, Di
    Xu, Jinhui
    He, Yang
    2019 53RD ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2019,
  • [10] Sparse Covariance Matrix Estimation With Eigenvalue Constraints
    Liu, Han
    Wang, Lie
    Zhao, Tuo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 439 - 459