On a combinatorial method for counting smooth numbers in sets of integers

被引:3
|
作者
Croot, Ernie
机构
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jnt.2007.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop a method for determining the number of integers without large prime factors lying in a given set S. We will apply it to give an easy proof that certain sufficiently dense sets A and B always produce the expected number of "smooth" sums a + b, a epsilon A, b epsilon B. The proof of this result is completely combinatorial and elementary. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [1] On smooth sets of integers
    Litman, Ami
    Moran-Schein, Shiri
    DISCRETE MATHEMATICS, 2009, 309 (04) : 797 - 813
  • [2] COUNTING INTEGERS WITH A SMOOTH TOTIENT
    Banks, W. D.
    Friedlander, J. B.
    Pomerance, C.
    Shparlinski, I. E.
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (04): : 1371 - 1386
  • [3] An Algorithm for Counting Smooth Integers
    Ishmukhametov, S.
    Sharifullina, F.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 128 - 137
  • [4] On the counting function of primitive sets of integers
    Ahlswede, R
    Khachatrian, LH
    Sárközy, A
    JOURNAL OF NUMBER THEORY, 1999, 79 (02) : 330 - 344
  • [5] On additive and multiplicative decompositions of sets of integers with restricted prime factors, II: Smooth numbers and generalizations
    Gyory, K.
    Hajdu, L.
    Sarkozy, A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (04): : 813 - 823
  • [6] On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers)
    Gyory, K.
    Hajdu, L.
    Sarkozy, A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (02): : 365 - 374
  • [7] JUXTAPOSING COMBINATORIAL AND ERGODIC PROPERTIES OF LARGE SETS OF INTEGERS
    Bergelson, Vitaly
    Moragues, Andreu Ferre
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 251 (01) : 173 - 238
  • [8] Juxtaposing combinatorial and ergodic properties of large sets of integers
    Vitaly Bergelson
    Andreu Ferré Moragues
    Israel Journal of Mathematics, 2022, 251 : 173 - 238
  • [9] Counting sets of integers, no k of which sum to another
    Calkin, NJ
    Taylor, AC
    JOURNAL OF NUMBER THEORY, 1996, 57 (02) : 323 - 327
  • [10] Elementary and combinatorial methods for counting prime numbers
    Stumpf P.
    Mathematische Semesterberichte, 2017, 64 (1) : 41 - 62