Groups whose same-order types are arithmetic progressions

被引:0
|
作者
Lazorec, Mihai-Silviu [1 ]
Tarnauceanu, Marius [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
关键词
Primary; Secondary; Group element orders; same-order type of a group; arithmetic progression; FINITE-GROUPS;
D O I
10.2989/16073606.2021.1942288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The same-order type tau(e)(G) of a finite group G is a set formed of the sizes of the equivalence classes containing the same order elements of G. In this paper, we study an arithmetical property of this set. More exactly, we outline some results on the classification and existence of finite groups whose same-order types are arithmetic progressions formed of 3 or 4 elements, the latter being the maximum size of such a sequence.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 50 条
  • [1] GROUPS WHOSE SAME-ORDER TYPES ARE ARITHMETIC PROGRESSIONS
    Shen, Rulin
    Jin, Yutao
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2025, 14 (03) : 165 - 170
  • [2] ON GROUPS WITH GIVEN SAME-ORDER TYPES
    Shen, Rulin
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (06) : 2140 - 2150
  • [3] A characterization of by same-order type
    Shen, Rulin
    Zou, Xuan
    Shi, Wujie
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 127 - 142
  • [4] A Note on Shen's Conjecture on Groups with Given Same-Order Type
    Kumar, P.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 899 - 902
  • [5] A Note on Shen’s Conjecture on Groups with Given Same-Order Type
    P. Kumar
    Mathematical Notes, 2022, 111 : 899 - 902
  • [6] Arithmetic progressions in finite groups
    Tarnauceanu, Marius
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (05)
  • [7] A characterization of by its Same-order type
    Taghvasani, L. Jafari
    Zarrin, M.
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (03): : 731 - 736
  • [8] Avoiding arithmetic progressions in cyclic groups
    Halbeisen, Lorenz
    Halbeisen, Stephanie
    ELEMENTE DER MATHEMATIK, 2005, 60 (03) : 114 - 123
  • [9] Well Ordering Groups with no Monotone Arithmetic Progressions
    Gyula Károlyi
    Péter Komjáth
    Order, 2017, 34 : 299 - 306
  • [10] Well Ordering Groups with no Monotone Arithmetic Progressions
    Karolyi, Gyula
    Komjath, Peter
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, 34 (02): : 299 - 306