Soft Sensor Transferability between Lines of a Sulfur Recovery Unit

被引:4
|
作者
Curreri, F. [1 ]
Patane, L. [2 ]
Xibilia, M. G. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Messina, Dipartimento Ingn, I-98166 Messina, ME, Italy
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
关键词
transferable soft sensor; nonlinear model; recurrent neural network; monitoring; prediction; inferential model; REGRESSION; PREDICTION; ENSEMBLE;
D O I
10.1016/j.ifacol.2021.08.415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Soft Sensors (SSs) are mathematical models that allow real-time estimation of hard-to-measure variables as a function of easy-to-measure ones in an industrial process, emulating the behavior of existing sensors when they are, for instance, taken off for maintenance. The Sulfur Recovery Unit (SRU) from a refinery is taken in exam. Recurrent Neural Networks (RNN) can capture the nonlinearity of such process but present a high complexity training and a very time-consuming structure optimization. For this reason, strategies to use pre-existing models are here examined by testing the transferability of the SSs between two parallel lines of the process. Copyright (C) 2021 The Authors.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 50 条
  • [1] Stacking approaches for the design of a soft sensor for a sulfur recovery unit
    Fortuna, L.
    Graziani, S.
    Napoli, G.
    Xibilia, M. G.
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 4358 - +
  • [2] Soft Sensor design for a Sulfur Recovery Unit using Genetic Algorithms
    Di Bella, A.
    Fortuna, L.
    Graziani, S.
    Napoli, G.
    Xibilia, M. G.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, CONFERENCE PROCEEDINGS BOOK, 2007, : 593 - +
  • [3] Soft analyzers for a sulfur recovery unit
    Fortuna, L
    Rizzo, A
    Sinatra, M
    Xibilia, MG
    CONTROL ENGINEERING PRACTICE, 2003, 11 (12) : 1491 - 1500
  • [4] Soft sensor design for a Sulfur Recovery Unit using a clustering based approach
    Graziani, S.
    Napoli, G.
    Xibilia, M. G.
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 1162 - +
  • [5] Comparing regressors selection methods for the soft sensor design of a sulfur recovery unit
    Fortuna, L.
    Graziani, S.
    Xibilia, M. G.
    Napoli, G.
    PROCEEDINGS OF 2006 MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2006, : 713 - +
  • [6] Soft Sensor Transferability: A Survey
    Curreri, Francesco
    Patane, Luca
    Xibilia, Maria Gabriella
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [7] Research on semi-supervised soft sensor modeling method for sulfur recovery unit based on ISSA-VMD-ESN
    Wang, Qinghong
    Li, Longhao
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [8] Stacked isomorphic autoencoder based soft analyzer and its application to sulfur recovery unit
    Yuan, Xiaofeng
    Wang, Yalin
    Yang, Chunhua
    Gui, Weihua
    INFORMATION SCIENCES, 2020, 534 : 72 - 84
  • [9] Pollutant monitoring in tail gas of sulfur recovery unit with statistical and soft computing models
    Morey, Akshay
    Pradhan, Soumyashis
    Kumar, Rahul Anil
    Pani, Ajaya Kumar
    Vijayan, Venkata S.
    Jain, Varun
    Gupta, Aayush
    CHEMICAL ENGINEERING COMMUNICATIONS, 2019, 206 (01) : 69 - 85
  • [10] Kuwait to install sulfur recovery unit
    不详
    CHEMICAL WEEK, 1999, 161 (11) : 22 - 22