SPARSE SUBSPACE AVERAGING FOR ORDER ESTIMATION

被引:0
|
作者
Garg, Vaibhav [1 ]
Ramirez, David [2 ,3 ]
Santamaria, Ignacio [1 ]
机构
[1] Univ Cantabria, Dept Commun Engn, Santander, Spain
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid, Spain
[3] Gregorio Maranon Hlth Res Inst, Madrid, Spain
关键词
Array processing; source enumeration; sparse representation; subspace averaging; SOURCE ENUMERATION; SIGNALS; SHRINKAGE; CRITERION;
D O I
10.1109/SSP49050.2021.9513773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of source enumeration for arbitrary geometry arrays in the presence of spatially correlated noise. The method combines a sparse reconstruction (SR) step with a sub-space averaging (SA) approach, and hence it is named sparse sub-space averaging (SSA). In the first step, each received snapshot is approximated by a sparse linear combination of the rest of snapshots. The SR problem is regularized by the logarithm-based surrogate of the l(0)-norm and solved using a majorization-minimization approach. Based on the SR solution, a sampling mechanism is proposed in the second step to generate a collection of subspaces, all of which approximately span the same signal subspace. Finally, the dimension of the average of this collection of subspaces provides a robust estimate for the number of sources. Our simulation results show that SSA provides robust order estimates under a variety of noise models.
引用
收藏
页码:411 / 415
页数:5
相关论文
共 50 条
  • [1] Subspace Averaging and Order Determination for Source Enumeration
    Garg, Vaibhav
    Santamaria, Ignacio
    Ramirez, David
    Scharf, Louis L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (11) : 3028 - 3041
  • [2] AN ORDER FITTING RULE FOR OPTIMAL SUBSPACE AVERAGING
    Santamaria, I.
    Scharf, L. L.
    Peterson, C.
    Kirby, M.
    Francos, J.
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [3] Order estimation for subspace methods
    Bauer, D
    AUTOMATICA, 2001, 37 (10) : 1561 - 1573
  • [4] Subspace Based Blind Sparse Channel Estimation
    Hayashi, Kazunori
    Matsushima, Hiroki
    Sakai, Hideaki
    de Carvalho, Elisabeth
    Popovski, Petar
    2012 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2012,
  • [5] A New Sparse Subspace Method for Wideband DOA Estimation
    Zhang, Ailian
    Xu, Wen
    OCEANS 2017 - ABERDEEN, 2017,
  • [6] MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS
    Vu, Vincent Q.
    Lei, Jing
    ANNALS OF STATISTICS, 2013, 41 (06): : 2905 - 2947
  • [7] A subspace method for model order estimation in CDMA
    Joutsensalo, J
    IEEE ISSSTA '96 - IEEE FOURTH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES & APPLICATIONS, PROCEEDINGS, VOLS 1-3, 1996, : 688 - 692
  • [8] Sparse Subspace Decomposition for Millimeter Wave MIMO Channel Estimation
    Zhang, Wei
    Kim, Taejoon
    Love, David J.
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [9] Online Sparse and Orthogonal Subspace Estimation from Partial Information
    Xiao, Pengyu
    Balzano, Laura
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 284 - 291
  • [10] Reweighted Sparse Subspace Clustering Based on Fractional-Order Function
    Zhai, Yiqiang
    Ji, Zexuan
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 412 - 422