Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

被引:69
|
作者
Amor, B. R. C. [1 ,2 ]
Schaub, M. T. [3 ,4 ]
Yaliraki, S. N. [1 ,2 ]
Barahona, M. [2 ,3 ]
机构
[1] Imperial Coll London, Dept Chem, London SW7 2AZ, England
[2] Imperial Coll London, Inst Chem Biol, London SW7 2AZ, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
[4] Catholic Univ Louvain, ICTEAM, B-1348 Louvain La Neuve, Belgium
基金
英国工程与自然科学研究理事会;
关键词
VIBRATIONAL-ENERGY FLOW; SIGNAL-TRANSDUCTION; PROTEIN STRUCTURES; PATHWAYS; DYNAMICS; CHEY; ACTIVATION; NETWORKS; SIMULATIONS; LANDSCAPES;
D O I
10.1038/ncomms12477
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to finetune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prediction of allosteric sites and mediating interactions through bond-to-bond propensities
    B. R. C. Amor
    M. T. Schaub
    S. N. Yaliraki
    M. Barahona
    Nature Communications, 7
  • [2] Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase
    Hodges, Maxwell
    Barahona, Mauricio
    Yaliraki, Sophia N.
    SCIENTIFIC REPORTS, 2018, 8
  • [3] Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase
    Maxwell Hodges
    Mauricio Barahona
    Sophia N. Yaliraki
    Scientific Reports, 8
  • [4] Understanding supramolecular interactions with hydrogen bond propensities
    Maloney, Andrew
    Pidcocki, Elna
    Sykes, Richard
    Wood, Peter
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E340 - E340
  • [5] Evaluating Competing Intermolecular Interactions through Molecular Electrostatic Potentials and Hydrogen-Bond Propensities
    Sandhu, Bhupinder
    McLean, Ann
    Sinha, Abhijeet S.
    Desper, John
    Sarjeant, Amy A.
    Vyas, Shyam
    Reutzel-Edens, Susan M.
    Aakeroy, Christer B.
    CRYSTAL GROWTH & DESIGN, 2018, 18 (01) : 466 - 478
  • [7] THROUGH BOND AND THROUGH SPACE INTERACTIONS IN THE PHOTODIMERS OF ACENAPHTHYLENE
    GLEITER, R
    GUBERNATOR, K
    CHEMISCHE BERICHTE-RECUEIL, 1982, 115 (12): : 3811 - 3817
  • [8] ADDITIVE THROUGH SPACE AND THROUGH BOND ORBITAL INTERACTIONS
    SCHOELLER, WW
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1979, (03): : 366 - 368
  • [9] BOND LENGTHENING AND THROUGH-BOND INTERACTIONS IN P,P'-DIBENZENE AND RELATED MOLECULES
    DOUGHERTY, DA
    SCHLEGEL, HB
    MISLOW, K
    TETRAHEDRON, 1978, 34 (10) : 1441 - 1447
  • [10] A study of dihydrogen bond interactions through three-centre bond and group indices
    Rangel, Fernando C.
    Montel, Adao L. B.
    Mundim, K. C.
    MOLECULAR SIMULATION, 2009, 35 (04) : 342 - 348