Using a Bayesian estimation algorithm for estimating parameter uncertainty and optimization of monitoring networks

被引:0
|
作者
Valstar, JR [1 ]
Minnema, B [1 ]
机构
[1] TNO, Inst Appl Geosci, NITG, NL-3508 TA Utrecht, Netherlands
关键词
calibration; inverse modeling; monitoring optimization; prior statistics; uncertainty;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncertainty of groundwater flow models is caused by the uncertainty of model parameters and model concept errors. Inverse models help to decrease the uncertainty of the model parameters and model errors, and consequently improve model results. Unfortunately, prior statistics of these parameters and errors are not known perfectly and are often guessed at. We introduce an algorithm that helps to identify the prior statistics of model parameters and model errors such that the resulting head statistics correspond with measurement residuals. We have also introduced an algorithm to optimize monitoring strategy in cases where the goal is minimization of the uncertainty of a groundwater flow model.
引用
收藏
页码:380 / 385
页数:6
相关论文
共 50 条
  • [1] Using a Bayesian estimation algorithm for estimating parameter uncertainty and optimization of monitoring networks
    Valstar, J.R.
    Minnema, B.
    IAHS-AISH Publication, 2002, (277): : 380 - 385
  • [2] Using Bayesian methods for the parameter estimation of deformation monitoring networks
    Tanir, E.
    Felsenstein, K.
    Yalcinkaya, M.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2008, 8 (02) : 335 - 347
  • [3] HOMODYNED K-DISTRIBUTION: PARAMETER ESTIMATION AND UNCERTAINTY QUANTIFICATION USING BAYESIAN NEURAL NETWORKS
    Tehrani, Ali K. Z.
    Rosado-Mendez, Ivan M.
    Rivaz, Hassan
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [4] Chaogate Parameter Optimization using Bayesian Optimization and Genetic Algorithm
    Acharya, Rabin Yu
    Charlot, Noeloikeau F.
    Alam, Md Mahbub
    Ganji, Fatemeh
    Gauthier, Daniel
    Forte, Domenic
    PROCEEDINGS OF THE 2021 TWENTY SECOND INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2021), 2021, : 426 - 431
  • [5] Modelling and estimating uncertainty in parameter estimation
    Banks, HT
    Bihari, KL
    INVERSE PROBLEMS, 2001, 17 (01) : 95 - 111
  • [6] Estimating uncertainty of streamflow simulation using Bayesian neural networks
    Zhang, Xuesong
    Liang, Faming
    Srinivasan, Raghavan
    Van Liew, Michael
    WATER RESOURCES RESEARCH, 2009, 45
  • [7] Bayesian Optimization for State and Parameter Estimation of Dynamic Networks with Binary Space
    Alali, Mohammad
    Imani, Mandi
    2024 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS, CCTA 2024, 2024, : 400 - 406
  • [8] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [9] Parameter Estimation in Bayesian Networks Using Overlapping Swarm Intelligence
    Fortier, Nathan
    Sheppard, John
    Strasser, Shane
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 9 - 16
  • [10] Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging
    Gao, Yujing
    Wallach, Daniel
    Hasegawa, Toshihiro
    Tang, Liang
    Zhang, Ruoyang
    Asseng, Senthold
    Kahveci, Tamer
    Liu, Leilei
    He, Jianqiang
    Hoogenboom, Gerrit
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 311