Unsupervised random forest for affinity estimation

被引:10
|
作者
Yi, Yunai [1 ]
Sun, Diya [1 ]
Li, Peixin [1 ]
Kim, Tae-Kyun [2 ]
Xu, Tianmin [3 ]
Pei, Yuru [1 ]
机构
[1] Peking Univ, Dept Machine Intelligence, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London, England
[3] Peking Univ, Stomatol Hosp, Sch Stomatol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
affinity estimation; forest-based metric; unsupervised clustering forest; pseudo-leaf-splitting (PLS); SHAPE; CLASSIFICATION; SEGMENTATION; REGRESSION;
D O I
10.1007/s41095-021-0241-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an unsupervised clustering random-forest-based metric for affinity estimation in large and high-dimensional data. The criterion used for node splitting during forest construction can handle rank-deficiency when measuring cluster compactness. The binary forest-based metric is extended to continuous metrics by exploiting both the common traversal path and the smallest shared parent node. The proposed forest-based metric efficiently estimates affinity by passing down data pairs in the forest using a limited number of decision trees. A pseudo-leaf-splitting (PLS) algorithm is introduced to account for spatial relationships, which regularizes affinity measures and overcomes inconsistent leaf assign-ments. The random-forest-based metric with PLS facilitates the establishment of consistent and point-wise correspondences. The proposed method has been applied to automatic phrase recognition using color and depth videos and point-wise correspondence. Extensive experiments demonstrate the effectiveness of the proposed method in affinity estimation in a comparison with the state-of-the-art.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 50 条
  • [1] Unsupervised random forest for affinity estimation
    Yunai Yi
    Diya Sun
    Peixin Li
    Tae-Kyun Kim
    Tianmin Xu
    Yuru Pei
    Computational Visual Media, 2022, 8 : 257 - 272
  • [2] Unsupervised random forest for affinity estimation
    Yunai Yi
    Diya Sun
    Peixin Li
    Tae-Kyun Kim
    Tianmin Xu
    Yuru Pei
    ComputationalVisualMedia, 2022, 8 (02) : 257 - 272
  • [3] Unsupervised learning with random forest predictors
    Shi, T
    Horvath, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) : 118 - 138
  • [4] Incremental Random Forest for Unsupervised Learning
    Wang, Li-Chiao
    Liu, Wei
    Liao, Chung-Shou
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 704 - 705
  • [5] Unsupervised Random Forest Manifold Alignment for Lipreading
    Pei, Yuru
    Kim, Tae-Kyun
    Zha, Hongbin
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 129 - 136
  • [6] Random Histogram Forest for Unsupervised Anomaly Detection
    Putina, Andrian
    Sozio, Mauro
    Rossi, Dario
    Navarro, Jose M.
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1226 - 1231
  • [7] Unsupervised random forest: a tutorial with case studies
    Afanador, Nelson Lee
    Smolinska, Agnieszka
    Tran, Thanh N.
    Blanchet, Lionel
    JOURNAL OF CHEMOMETRICS, 2016, 30 (05) : 232 - 241
  • [8] Random Forest Density Estimation
    Wen, Hongwei
    Hang, Hanyuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [9] Unsupervised Random Forest Indexing for Fast Action Search
    Yu, Gang
    Yuan, Junsong
    Liu, Zicheng
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 865 - 872
  • [10] Detection of genetic similarities using unsupervised random forest
    Fouodo, Cesaire J. K.
    Konig, Inke R.
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 699 - 699