Analytic equation of state for the exponential-six fluids based on the Ross variational perturbation theory

被引:14
|
作者
Sun, JX [1 ]
Cai, LC
Wu, Q
Jing, FQ
机构
[1] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China
[2] SW Inst Fluid Phys, Lab Shock Wave & Detonat Phys Res, Mianyang 621900, Peoples R China
关键词
equation of state; thermodynamic quantities; analyticity; variational;
D O I
10.1016/S0378-4371(03)00289-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytic expression of radial distribution function of hard spheres is developed in terms of a polynomial expansion of nonlinear base functions and the Carnahan-Starling equation of state (EOS). The comparison with the Monte-Carlo data and the Percus-Yevick expression shows that the expression developed gives out better results. The expression is very simple that can make most perturbation theories become analytic ones, and a simple analytic EOS for the fluids with continuous exponential-six potential is established based on the Ross variational perturbation theory. The main thermodynamic quantities have been analytically derived, the resulting expressions are surprisingly simple, the variational procedure is greatly simplified and the calculations are absolutely convergent. The numerical results are compared with the Monte-Carlo data and the original non-analytic theory. It is shown that the precision of the analytic EOS is as good as the original non-analytic one. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:482 / 491
页数:10
相关论文
共 50 条