A STEIN CRITERION VIA DIVISORS FOR DOMAINS OVER STEIN MANIFOLDS

被引:0
|
作者
Breaz, Daniel [1 ]
Vajaitu, Viorel [2 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Alba Iulia 510009, Alba, Romania
[2] Univ Sci & Technol Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
BUNDLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a domain X over a Stein manifold is Stein if the following two conditions are fulfilled: a) the cohomology group H-i (X, O) vanishes for i >= 2 and b) every topologically trivial holomorphic line bundle over X admits a non-trivial meromorphic section. As a consequence we recover, with a different proof, a known result due to Siu stating that a domain X over a Stein manifold Y is Stein provided that H-i (X, O) = 0 for i >= 1.
引用
收藏
页码:287 / 302
页数:16
相关论文
共 50 条