A large-scale solar dynamics observatory image dataset for computer vision applications

被引:17
|
作者
Kucuk, Ahmet [1 ]
Banda, Juan M. [1 ]
Angryk, Rafal A. [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
关键词
RETRIEVAL;
D O I
10.1038/sdata.2017.96
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A large-scale solar dynamics observatory image dataset for computer vision applications
    Ahmet Kucuk
    Juan M. Banda
    Rafal A. Angryk
    Scientific Data, 4
  • [2] Computer Vision for the Solar Dynamics Observatory (SDO)
    P. C. H. Martens
    G. D. R. Attrill
    A. R. Davey
    A. Engell
    S. Farid
    P. C. Grigis
    J. Kasper
    K. Korreck
    S. H. Saar
    A. Savcheva
    Y. Su
    P. Testa
    M. Wills-Davey
    P. N. Bernasconi
    N.-E. Raouafi
    V. A. Delouille
    J. F. Hochedez
    J. W. Cirtain
    C. E. DeForest
    R. A. Angryk
    I. De Moortel
    T. Wiegelmann
    M. K. Georgoulis
    R. T. J. McAteer
    R. P. Timmons
    Solar Physics, 2012, 275 : 79 - 113
  • [3] Computer Vision for the Solar Dynamics Observatory (SDO)
    Martens, P. C. H.
    Attrill, G. D. R.
    Davey, A. R.
    Engell, A.
    Farid, S.
    Grigis, P. C.
    Kasper, J.
    Korreck, K.
    Saar, S. H.
    Savcheva, A.
    Su, Y.
    Testa, P.
    Wills-Davey, M.
    Bernasconi, P. N.
    Raouafi, N. -E.
    Delouille, V. A.
    Hochedez, J. F.
    Cirtain, J. W.
    DeForest, C. E.
    Angryk, R. A.
    De Moortel, I.
    Wiegelmann, T.
    Georgoulis, M. K.
    McAteer, R. T. J.
    Timmons, R. P.
    SOLAR PHYSICS, 2012, 275 (1-2) : 79 - 113
  • [4] A LARGE-SCALE SOLAR IMAGE DATASET WITH LABELED EVENT REGIONS
    Schuh, Michael A.
    Angryk, Rafal A.
    Pillai, Karthik Ganesan
    Banda, Juan M.
    Martens, Petrus C.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4349 - 4353
  • [5] MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision
    Li, Jianning
    Zhou, Zongwei
    Yang, Jiancheng
    Pepe, Antonio
    Gsaxner, Christina
    Luijten, Gijs
    Qu, Chongyu
    Zhang, Tiezheng
    Chen, Xiaoxi
    Li, Wenxuan
    Wodzinski, Marek
    Friedrich, Paul
    Xie, Kangxian
    Jin, Yuan
    Ambigapathy, Narmada
    Nasca, Enrico
    Solak, Naida
    Melito, Gian Marco
    Viet Duc Vu
    Memon, Afaque R.
    Schlachta, Christopher
    De Ribaupierre, Sandrine
    Patel, Rajnikant
    Eagleson, Roy
    Chen, Xiaojun
    Maechler, Heinrich
    Kirschke, Jan Stefan
    de la Rosa, Ezequiel
    Christ, Patrick Ferdinand
    Li, Hongwei Bran
    Ellis, David G.
    Aizenberg, Michele R.
    Gatidis, Sergios
    Kuestner, Thomas
    Shusharina, Nadya
    Heller, Nicholas
    Andrearczyk, Vincent
    Depeursinge, Adrien
    Hatt, Mathieu
    Sekuboyina, Anjany
    Loeffler, Maximilian T.
    Liebl, Hans
    Dorent, Reuben
    Vercauteren, Tom
    Shapey, Jonathan
    Kujawa, Aaron
    Cornelissen, Stefan
    Langenhuizen, Patrick
    Ben-Hamadou, Achraf
    Rekik, Ahmed
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2025, 70 (01): : 71 - 90
  • [6] SDFC dataset: a large-scale benchmark dataset for hyperspectral image classification
    Sun, Liwei
    Zhang, Junjie
    Li, Jia
    Wang, Yueming
    Zeng, Dan
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (02)
  • [7] SDFC dataset: a large-scale benchmark dataset for hyperspectral image classification
    Liwei Sun
    Junjie Zhang
    Jia Li
    Yueming Wang
    Dan Zeng
    Optical and Quantum Electronics, 2023, 55
  • [8] Dynamics of Large-Scale Solar Flows
    Hotta, Hideyuki
    Bekki, Yuto
    Gizon, Laurent
    Noraz, Quentin
    Rast, Mark
    SPACE SCIENCE REVIEWS, 2023, 219 (08)
  • [9] Dynamics of Large-Scale Solar Flows
    Hideyuki Hotta
    Yuto Bekki
    Laurent Gizon
    Quentin Noraz
    Mark Rast
    Space Science Reviews, 2023, 219
  • [10] MARVEL: A Large-Scale Image Dataset for Maritime Vessels
    Gundogdu, Erhan
    Solmaz, Berkan
    Yucesoy, Veysel
    Koc, Aykut
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 165 - 180