Kobayashi-Hitchin correspondence for twisted vector bundles

被引:3
|
作者
Perego, Arvid [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
来源
COMPLEX MANIFOLDS | 2021年 / 8卷 / 01期
关键词
twisted vector bundles; semistability; Hermite-Einsten metrics; YANG-MILLS CONNECTIONS; HERMITIAN-EINSTEIN CONNECTIONS; TAME HARMONIC BUNDLES; STABLE BUNDLES; B-FIELDS; STABILITY; EXISTENCE; METRICS; MODULI; PAIRS;
D O I
10.1515/coma-2020-0107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Kobayashi-Hitchin correspondence and the approximate Kobayashi-Hitchin correspondence for twisted holomorphic vector bundles on compact Kahler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g-polystable if and only if it is g-Hermite-Einstein, and if X is a compact Kahler manifold and g is a Kahler metric on X, then a twisted holomorphic vector bundle on X is g-semistable if and only if it is approximate g-Hermite-Einstein.
引用
收藏
页码:1 / 95
页数:95
相关论文
共 50 条