Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

被引:0
|
作者
Bendahl, L [1 ]
Hansen, SH [1 ]
Gammelgaard, B [1 ]
机构
[1] Royal Danish Sch Pharm, Dept Analyt & Pharmaceut Chem, DK-2100 Copenhagen, Denmark
关键词
noncovalent adsorption of ionic polymers dynamical coating; capillary zone electrophoresis; micellar electrokinetic capillary chromatography capillary electrophoresis mass spectrometry;
D O I
10.1002/1522-2683(200107)22:12<2565::AID-ELPS2565>3.0.CO;2-I
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene and poly(vinylsulfonate) (PVS). A stable dynamic coating was formed when PVS was added to the background electrolyte. Thus, when the PVS concentration in the background electrolyte was optimized for CZE (0.01 %), the EOF differed less than 0.3% after 54 runs. The electroosmotic mobility in the coated capillaries was (4.9 +/- 0.1) X 10(-4) cm(2)V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2-9. In addition to fast CZE and MEKC separations at low pH, analysis of the alkaline compounds by CE-MS was also possible.
引用
收藏
页码:2565 / 2573
页数:9
相关论文
共 50 条