Forecasting daily global solar irradiance generation using machine learning

被引:92
|
作者
Sharma, Amandeep [1 ]
Kakkar, Ajay [1 ]
机构
[1] Thapar Univ, Elect & Commun Engn Dept, Patiala, Punjab, India
来源
关键词
Solar irradiance; Energy harvesting; Solar forecasting; Machine learning; SUPPORT VECTOR MACHINE; VARIABLE SELECTION; PREDICTION; RADIATION; OPTIMIZATION; ENERGY;
D O I
10.1016/j.rser.2017.08.066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rechargeable wireless sensor networks mitigate the life span and cost constraints propound in conventional battery operated networks. Reliable knowledge of solar radiation is essential for informed design, deployment planning and optimal management of self-powered nodes. The problem of solar irradiance forecasting can be well addressed by machine learning methodologies over historical data set. In proposed work, forecasts have been done using FoBa, leapForward, spikeslab, Cubist and bagEarthGCV models. To validate the effectiveness of these methodologies, a series of experimental evaluations have been presented in terms of forecast accuracy, correlation coefficient and root mean square error (RMSE). The r interface has been used as simulation platform for these evaluations. The dataset from national renewable energy laboratory (NREL) has been used for experiments. The experimental results exhibits that from few hours to two days ahead solar irradiance prediction is precisely estimated by machine learning based models irrespective of seasonal variation in weather conditions.
引用
收藏
页码:2254 / 2269
页数:16
相关论文
共 50 条
  • [1] Forecasting Solar Irradiance Using Machine Learning
    Shahin, Md Burhan Uddin
    Sarkar, Antu
    Sabrina, Tishna
    Roy, Shaati
    2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2020,
  • [2] Solar Irradiance Forecasting Using Ensemble Models of Machine Learning
    Prajesh, Ashish
    Jain, Prerna
    Anwar, Md Kaifi
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [3] Forecasting Hourly Global Horizontal Solar Irradiance in South Africa Using Machine Learning Models
    Mutavhatsindi, Tendani
    Sigauke, Caston
    Mbuvha, Rendani
    IEEE ACCESS, 2020, 8 : 198872 - 198885
  • [4] Solar Irradiance Forecasting by Machine Learning for Solar Car Races
    Shao, Xiaoyan
    Lu, Siyuan
    van Kessel, Theodore G.
    Hamann, Hendrik F.
    Daehler, Leda
    Cwagenberg, Jeffrey
    Li, Alan
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 2209 - 2216
  • [5] Machine learning for solar irradiance forecasting of photovoltaic system
    Li, Jiaming
    Ward, John K.
    Tong, Jingnan
    Collins, Lyle
    Platt, Glenn
    RENEWABLE ENERGY, 2016, 90 : 542 - 553
  • [6] MACHINE LEARNING FOR FORECASTING SOLAR IRRADIANCE USING SATELLITE AND LIMITED GROUND DATA
    Luna, Jocellyn
    Chancusig, Alex
    Cordova-Garcia, Jose
    Soriano, Guillermo
    PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024, 2024,
  • [7] Hourly solar irradiance forecasting based on machine learning models
    Melzi, Fateh Nassim
    Touati, Taieh
    Same, Allou
    Oukhellou, Latifa
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 441 - 446
  • [8] Hybrid machine learning and optimization method for solar irradiance forecasting
    Zhu, Chaoyang
    Wang, Mengxia
    Guo, Mengxing
    Deng, Jinxin
    Du, Qipei
    Wei, Wei
    Zhang, Yuxiang
    ENGINEERING OPTIMIZATION, 2024,
  • [9] A hybrid machine-learning model for solar irradiance forecasting
    Almarzooqi, Ameera M.
    Maalouf, Maher
    El-Fouly, Tarek H. M.
    Katzourakis, Vasileios E.
    El Moursi, Mohamed S.
    Chrysikopoulos, Constantinos, V
    CLEAN ENERGY, 2024, 8 (01): : 100 - 110
  • [10] Solar irradiance forecasting model based on extreme learning machine
    Burianek, Tomas
    Misak, Stanislav
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 2016,