Exploiting SAR Tomography for Supervised Land-Cover Classification

被引:4
|
作者
D'Hondt, Olivier [1 ]
Haensch, Ronny [1 ]
Wagener, Nicolas [2 ]
Hellwich, Olaf [1 ]
机构
[1] Tech Univ Berlin, MAR6-5,Marchstr 23, D-10587 Berlin, Germany
[2] European Space Agcy, Largo Galileo Galilei 1, I-00044 Frascati, Italy
关键词
SAR tomography; land-cover classification; feature extraction; random forests; POLARIMETRIC SAR; RECONSTRUCTION; SIGNALS; IMAGERY; SINGLE;
D O I
10.3390/rs10111742
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we provide the first in-depth evaluation of exploiting Tomographic Synthetic Aperture Radar (TomoSAR) for the task of supervised land-cover classification. Our main contribution is the design of specific TomoSAR features to reach this objective. In particular, we show that classification based on TomoSAR significantly outperforms PolSAR data provided relevant features are extracted from the tomograms. We also provide a comparison of classification results obtained from covariance matrices versus tomogram features as well as obtained by different reference methods, i.e., the traditional Wishart classifier and the more sophisticated Random Forest. Extensive qualitative and quantitative results are shown on a fully polarimetric and multi-baseline dataset from the E-SAR sensor from the German Aerospace Center (DLR).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Unsupervised land-cover classification of interferometric SAR images
    Dammert, PBG
    Kuhlmann, S
    Askne, J
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1805 - 1808
  • [2] Land-cover Classification in SAR Images using Dictionary Learning
    Aktas, Gizem
    Bak, Cagdas
    Nar, Fatih
    Sen, Nigar
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [3] Land-cover classification and forest biophysical retrieval from SAR
    Dobson, MC
    Bergen, K
    GREAT LAKES, GREAT FORESTS, PROCEEDINGS, 1999, : 98 - 106
  • [4] Artificial immune-based supervised classifier for land-cover classification
    Pal, Mahesh
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (08) : 2273 - 2291
  • [5] Self-supervised Vision Transformers for Land-cover Segmentation and Classification
    Scheibenreif, Linus
    Hanna, Joelle
    Mommert, Michael
    Borth, Damian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1421 - 1430
  • [6] Parallel supervised land-cover classification system for hyperspectral and multispectral images
    Beatriz P. Garcia-Salgado
    Volodymyr I. Ponomaryov
    Sergiy Sadovnychiy
    Marco Robles-Gonzalez
    Journal of Real-Time Image Processing, 2018, 15 : 687 - 704
  • [7] A review of supervised object-based land-cover image classification
    Ma, Lei
    Li, Manchun
    Ma, Xiaoxue
    Cheng, Liang
    Du, Peijun
    Liu, Yongxue
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 : 277 - 293
  • [8] Parallel supervised land-cover classification system for hyperspectral and multispectral images
    Garcia-Salgado, Beatriz P.
    Ponomaryov, Volodymyr I.
    Sadovnychiy, Sergiy
    Robles-Gonzalez, Marco
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 687 - 704
  • [9] Targeted Land-Cover Classification
    Marconcini, Mattia
    Fernandez-Prieto, Diego
    Buchholz, Tim
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07): : 4173 - 4193
  • [10] Land-cover supervised classification using user-oriented feature database
    Yoon, GW
    Park, JH
    Choi, KH
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2724 - 2726