Hyperspectral Unmixing Using Double Reweighted Collaborative Sparse Regression

被引:1
|
作者
Li, Yan [1 ,2 ]
Wang, Shengqian [1 ,2 ]
机构
[1] Nanchang Inst Technol, Nanchang 330099, Jiangxi, Peoples R China
[2] Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang 330099, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
collaborative sparse unmixing; double reweighted; sparsity; hyperspectral unmixing;
D O I
10.1117/12.2540096
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An important technique in hyperspectral unmixing is collaborative sparse regression. It improves the unmixing results by solving a joint sparse regression problem, where the sparsity is simultaneously imposed to all pixels in the data set. Now it is well known that introducing weighted factors to enforce sparseness becomes a necessary process in sparse unmixing methods. In this paper, considering the desirable performance of reweighted minimization, a double reweighted collaborative sparse regression (DR-CLSUnSAL) has been utilized. The proposed method enhances the sparsity of abundance factions in both the spectral sparsity (column sparsity of the fractional abundances in the sense) and the spatial sparsity (row sparsity of the fractional abundances in the sense). Then the optimization problem was simply solved by the variable splitting and augmented Lagrangian algorithm. Our experimental results with simulated data sets generated by randomly extracting from the United State Geological Survey(USGS) library demonstrate that the proposed method is an effective and accurate sparse unmixing algorithm compared with other advanced hyperspectral unmixing methods.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Pizurica, Aleksandra
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6986 - 6989
  • [2] Reweighted local collaborative sparse regression for hyperspectral unmixing
    Li, Yan
    Zhang, Shaoquan
    Deng, Chengzhi
    Wang, Shengqian
    INFRARED PHYSICS & TECHNOLOGY, 2019, 97 : 277 - 286
  • [3] Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation
    Wang, Rui
    Li, Heng-Chao
    Pizurica, Aleksandra
    Li, Jun
    Plaza, Antonio
    Emery, William J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1146 - 1150
  • [4] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488
  • [5] Double Reweighted Sparse Regression and Graph Regularization for Hyperspectral Unmixing
    Wang, Si
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Liu, Gang
    Cheng, Yougan
    REMOTE SENSING, 2018, 10 (07)
  • [6] Fast Hyperspectral Unmixing via Reweighted Sparse Regression
    Han, Hongwei
    Guo, Ke
    Wang, Maozhi
    Zhang, Tingbin
    Zhang, Shuang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (09): : 1819 - 1832
  • [7] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [8] Hyperspectral Unmixing with Robust Collaborative Sparse Regression
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Liu, Chengyin
    Ma, Jiayi
    REMOTE SENSING, 2016, 8 (07)
  • [9] ON THE USE OF COLLABORATIVE SPARSE REGRESSION IN HYPERSPECTRAL UNMIXING CHAINS
    Iordache, Marian-Daniel
    Okujeni, Akpona
    van der Linden, Sebastian
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Somers, Ben
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [10] Hyperspectral Unmixing Based on Local Collaborative Sparse Regression
    Zhang, Shaoquan
    Li, Jun
    Liu, Kai
    Deng, Chengzhi
    Liu, Lin
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 631 - 635