Modified polydopamine derivatives as high-performance organic anodes for potassium-ion batteries

被引:3
|
作者
Zhang, Yi [1 ]
Zhang, Chenglin [2 ]
Fu, Qun [1 ]
Zhao, Huaping [2 ]
Lei, Yong [2 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Tech Univ Ilmenau, Fachgebiet Angew Nanophys, Inst Phys & IMN MacraNana ZIK, D-98693 Ilmenau, Germany
来源
SUSTAINABLE ENERGY & FUELS | 2022年 / 6卷 / 15期
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL ENERGY-STORAGE; LITHIUM-ION; ELECTRODE MATERIAL; TEREPHTHALATE; MECHANISM; DOPAMINE; CAPACITY; STRATEGY; POLYMER; DEVICES;
D O I
10.1039/d2se00684g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polydopamine (PDA) as a carbon source and a versatile coating material has been widely studied in rechargeable battery electrodes. However, it is rare to directly utilize PDA as an organic anode for ion storage, especially in potassium-ion batteries (PIBs). In this work, modified PDA (MPDA-350) with a porous structure is synthesized by collective methods of template-assisted and low-temperature pyrolysis, which endows PDA with large ion diffusion tunnels and increased active sites for K+ ion storage. Moreover, contrast experiments demonstrate that the annealing process with an appropriate temperature can increase the content and activity of electroactive groups in MPDA-350. The prepared MPDA-350 is first applied to PIBs that deliver high reversible capacity (384.9 mA h g(-1) at 100 mA g(-1)) and very stable cyclability (99.94% capacity retention after 500 cycles). This work provides a new insight for the expansion of high-performance organic anodes for PIBs.
引用
收藏
页码:3527 / 3535
页数:9
相关论文
共 50 条
  • [1] Modified polydopamine derivatives as high-performance organic anodes for potassium-ion batteries
    Zhang, Yi
    Zhang, Chenglin
    Fu, Qun
    Zhao, Huaping
    Lei, Yong
    Sustainable Energy and Fuels, 2022, 6 (15): : 3527 - 3535
  • [2] Covalently bonded metal-organic groups anodes for high-performance potassium-ion batteries
    Jia, Xinxin
    Li, Shengyang
    Chen, Song
    Wang, Lei
    Deng, Hongli
    Yuan, Yizhi
    Sun, Hongtao
    Fu, Licai
    Zhu, Jian
    Lu, Bingan
    SCIENCE CHINA-MATERIALS, 2023, 66 (10) : 3827 - 3836
  • [3] Coal-based carbon anodes for high-performance potassium-ion batteries
    Xiao, Nan
    Zhang, Xiaoyu
    Liu, Chang
    Wang, Yuwei
    Li, Hongqiang
    Qiu, Jieshan
    CARBON, 2019, 147 : 574 - 581
  • [4] Bismuth Nanoparticles Confined in Carbonaceous Nanospheres as Anodes for High-Performance Potassium-Ion Batteries
    Yao, Jie
    Zhang, Chenglin
    Yang, Guowei
    Sha, Mo
    Dong, Yulian
    Fu, Qun
    Wu, Yuhan
    Zhao, Huaping
    Wu, Minghong
    Lei, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 31766 - 31774
  • [5] Synthesis of pitch-derived carbon anodes for high-performance potassium-ion batteries
    Jiang, Ming-Chi
    Sun, Ning
    Yu, Jia-Xu
    Wang, Ti-Zheng
    Razium Ali, Somoro
    Jia, Meng-Qiu
    Xu, Bin
    Xinxing Tan Cailiao/New Carbon Materials, 2024, 39 (06): : 1117 - 1127
  • [6] CuO Nanoplates for High-Performance Potassium-Ion Batteries
    Cao, Kangzhe
    Liu, Huiqiao
    Li, Wangyang
    Han, Qingqing
    Zhang, Zhang
    Huang, Kejing
    Jing, Qiangshan
    Jiao, Lifang
    SMALL, 2019, 15 (36)
  • [7] Cathode materials for high-performance potassium-ion batteries
    Li, Lin
    Hu, Zhe
    Liu, Qiannan
    Wang, Jia-Zhao
    Guo, Zaiping
    Liu, Hua-Kun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [8] Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries
    Chen, Jintao
    Chen, Guanxu
    Zhao, Siyu
    Feng, Junrun
    Wang, Ryan
    Parkin, Ivan P.
    He, Guanjie
    SMALL, 2023, 19 (07)
  • [9] [n]Phenacenes: Promising Organic Anodes for Potassium-Ion Batteries
    Li, Meng-Hu
    Zhang, Si-Yuan
    Lv, Hai-Yan
    Li, Wen-Jie
    Lu, Ziheng
    Yang, Chunlei
    Zhong, Guo-Hua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (13): : 6964 - 6970
  • [10] High-performance carbon by amorphization and prepotassiation for potassium-ion battery anodes
    Nam, Ki-Hun
    Ganesan, Vinoth
    Chae, Keun Hwa
    Park, Cheol-Min
    CARBON, 2021, 181 : 290 - 299