Metric Geometry of Normal Kahler Spaces, Energy Properness, and Existence of Canonical Metrics

被引:9
|
作者
Darvas, Tamas [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; EINSTEIN METRICS; VARIETIES; CONE;
D O I
10.1093/imrn/rnw203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, omega) be a compact normal Kahler space with Hodge metric omega. In this paper, the last in a sequence of works studying the relationship between energy properness and canonical Kahler metrics, we introduce a geodesic metric structure on H-omega(X), the space of Kahler potentials, whose completion is the finite energy space E-omega(1)(X). Using this metric structure and the results of Berman-Boucksom-Eyssidieux-Guedj-Zeriahi as ingredients in the existence/properness principle of Rubinstein and the author, we show that existence of Kahler-Einstein metrics on log Fano pairs is equivalent to properness of the K-energy in a suitable sense. To our knowledge, this result represents the first characterization of general log Fano pairs admitting Kahler-Einstein metrics. Wealso discuss the analogous result for Kahler-Ricci solitons on Fano varieties.
引用
收藏
页码:6752 / 6777
页数:26
相关论文
共 3 条